Difference between revisions of "1980 AHSME Problems/Problem 8"

(Created page with "==Problem== How many pairs <math>(a,b)</math> of non-zero real numbers satisfy the equation <cmath> \frac{1}{a} + \frac{1}{b} = \frac{1}{a+b} </cmath> <math>\text{(A)} \ \text...")
 
Line 6: Line 6:
 
<math>\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0</math>
 
<math>\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0</math>
 
<math>\text{(E)} \ \text{two pairs for each} ~b \neq 0</math>
 
<math>\text{(E)} \ \text{two pairs for each} ~b \neq 0</math>
 +
 +
== Solution ==
 +
 +
We hope to simplify this expression into a quadratic in order to find the solutions. To do this, we find a common denominator to the LHS by multiplying by <math> ab </math>.
 +
<math> a+b=\frac{ab}{a+b} \ a^2+2ab+b^2=ab \ a^2+ab+b^2=0.</math>
 +
 +
By the quadratic formula, this has no real solutions. <math>\boxed{(A)}</math>
 +
 +
== See also ==
 +
{{AHSME box|year=1980|num-b=7|num-a=9}}

Revision as of 19:34, 31 March 2013

Problem

How many pairs $(a,b)$ of non-zero real numbers satisfy the equation

\[\frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}\] $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0$ $\text{(E)} \ \text{two pairs for each} ~b \neq 0$

Solution

We hope to simplify this expression into a quadratic in order to find the solutions. To do this, we find a common denominator to the LHS by multiplying by $ab$. $a+b=\frac{ab}{a+b} \\ a^2+2ab+b^2=ab \\ a^2+ab+b^2=0.$

By the quadratic formula, this has no real solutions. $\boxed{(A)}$

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions