Difference between revisions of "2002 AMC 12A Problems/Problem 23"
Machiavelli (talk | contribs) (→Solution) |
Mikecmtong (talk | contribs) (→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
+ | '''Solution 1''' | ||
<asy> | <asy> | ||
unitsize(0.25 cm); | unitsize(0.25 cm); | ||
Line 23: | Line 24: | ||
Then by using Heron's Formula on <math>ABD</math> (with sides <math>12,7,9</math>), we have <math>[\triangle ABD]= \sqrt{14(2)(7)(5)} = 14\sqrt5 \Longrightarrow \boxed{\text{D}}</math>. | Then by using Heron's Formula on <math>ABD</math> (with sides <math>12,7,9</math>), we have <math>[\triangle ABD]= \sqrt{14(2)(7)(5)} = 14\sqrt5 \Longrightarrow \boxed{\text{D}}</math>. | ||
+ | |||
+ | '''Solution 2''' | ||
+ | |||
+ | Let M be the point of the perpendicular bisector on BC. By the perpendicular bisector theorem, <math>BD = DC = 7</math> and <math>BM = BC</math>. Also, by the angle bisector theorem, <math>\frac {AB}{BC} = \frac{9}{7}</math>. Thus, let <math>AB = 9x</math> and <math>BC = 7x</math>. In addition, <math>BM = 3.5x</math>. | ||
+ | |||
+ | Thus, cos<math>\angle CBD = \frac {3.5x}{7} = \frac {x}{2}</math>. Additionally, using the Law of Cosines and the fact that <math>\angle CBD = \angle ABD</math>, <math>81 = 49 + 81x^2 - 2(9x)(7)</math>cos<math>\angle CBD</math> | ||
+ | |||
+ | Substituting and simplifying, we get <math>x = 4/3</math> | ||
+ | |||
+ | Thus, <math>AB = 12</math>. We now know all sides of <math> \triangle ABD</math>. Using Heron's Formula on <math>\triangle ABD</math>, <math>\sqrt{(14)(2)(7)(5)} = 14\sqrt5 \Longrightarrow \boxed{\text{D}}</math> | ||
==See Also== | ==See Also== |
Revision as of 17:52, 10 May 2013
Problem
In triangle , side and the perpendicular bisector of meet in point , and bisects . If and , what is the area of triangle ABD?
Solution
Solution 1 Looking at the triangle , we see that its perpendicular bisector reaches the vertex, therefore hinting it is isoceles. Let , so that from given and the previous deducted. Then because any exterior angle of a triangle has a measure that is the sum of the two interior angles that are not adjacent to the exterior angle. That means and are similar, so .
Then by using Heron's Formula on (with sides ), we have .
Solution 2
Let M be the point of the perpendicular bisector on BC. By the perpendicular bisector theorem, and . Also, by the angle bisector theorem, . Thus, let and . In addition, .
Thus, cos. Additionally, using the Law of Cosines and the fact that , cos
Substituting and simplifying, we get
Thus, . We now know all sides of . Using Heron's Formula on ,
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |