Difference between revisions of "1989 AJHSME Problems/Problem 2"

(New page: ==Problem== <math>\frac{2}{10}+\frac{4}{100}+\frac{6}{1000}=</math> <math>\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246<...)
 
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
 
\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} &= \frac{200}{1000}+\frac{40}{1000}+\frac{6}{1000} \
 
\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} &= \frac{200}{1000}+\frac{40}{1000}+\frac{6}{1000} \
 
&= \frac{246}{1000} \
 
&= \frac{246}{1000} \
&= .246 \rightarrow \boxed{\text{E}}
+
&= .246 \rightarrow \boxed{\text{D}}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
Line 17: Line 17:
 
{{AJHSME box|year=1989|num-b=1|num-a=3}}
 
{{AJHSME box|year=1989|num-b=1|num-a=3}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:57, 4 July 2013

Problem

$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000}=$

$\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$

Solution

\begin{align*} \frac{2}{10}+\frac{4}{100}+\frac{6}{1000} &= \frac{200}{1000}+\frac{40}{1000}+\frac{6}{1000} \\ &= \frac{246}{1000} \\ &= .246 \rightarrow \boxed{\text{D}} \end{align*}

See Also

1989 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png