Difference between revisions of "2014 AMC 10B Problems/Problem 9"

(Problem)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
For real numbers <math> w </math> and <math> z </math>, <cmath> \cfrac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014. </cmath> What is <math> \frac{w+z}{w-z} </math>? \
+
For real numbers <math> w </math> and <math> z </math>, <cmath> \cfrac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014. </cmath> What is <math> \frac{w+z}{w-z} </math>? //
 
<math> \textbf{(A) }-2014\qquad\textbf{(B) }\frac{-1}{2014}\qquad\textbf{(C) }\frac{1}{2014}\qquad\textbf{(D) }1\qquad\textbf{(E) }2014 </math>
 
<math> \textbf{(A) }-2014\qquad\textbf{(B) }\frac{-1}{2014}\qquad\textbf{(C) }\frac{1}{2014}\qquad\textbf{(D) }1\qquad\textbf{(E) }2014 </math>
  

Revision as of 12:28, 20 February 2014

Problem

For real numbers $w$ and $z$, \[\cfrac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014.\] What is $\frac{w+z}{w-z}$? // $\textbf{(A) }-2014\qquad\textbf{(B) }\frac{-1}{2014}\qquad\textbf{(C) }\frac{1}{2014}\qquad\textbf{(D) }1\qquad\textbf{(E) }2014$

Solution

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png