Difference between revisions of "2001 USAMO Problems/Problem 2"
5849206328x (talk | contribs) (→Solution: official solution) |
5849206328x (talk | contribs) (→Solution 2: added images) |
||
Line 25: | Line 25: | ||
'''Lemma''': Segment <math>D_1Q</math> is a diameter of circle <math>\omega</math>. | '''Lemma''': Segment <math>D_1Q</math> is a diameter of circle <math>\omega</math>. | ||
− | + | <center>[[File:2001usamo2-1.png]]</center> | |
''Proof'': Let <math>I</math> be the center of circle <math>\omega</math>, i.e., <math>I</math> is the incenter of triangle <math>ABC</math>. Extend segment <math>D_1I</math> through <math>I</math> to intersect circle <math>\omega</math> again at <math>Q'</math>, and extend segment <math>AQ'</math> through <math>Q'</math> to intersect segment <math>BC</math> at <math>D'</math>. We show that <math>D_2 = D'</math>, which in turn implies that <math>Q = Q'</math>, that is, <math>D_1Q</math> is a diameter of <math>\omega</math>. | ''Proof'': Let <math>I</math> be the center of circle <math>\omega</math>, i.e., <math>I</math> is the incenter of triangle <math>ABC</math>. Extend segment <math>D_1I</math> through <math>I</math> to intersect circle <math>\omega</math> again at <math>Q'</math>, and extend segment <math>AQ'</math> through <math>Q'</math> to intersect segment <math>BC</math> at <math>D'</math>. We show that <math>D_2 = D'</math>, which in turn implies that <math>Q = Q'</math>, that is, <math>D_1Q</math> is a diameter of <math>\omega</math>. | ||
Line 40: | Line 40: | ||
that is, <math>D' = D_2</math>, as desired. <math>\blacksquare</math> | that is, <math>D' = D_2</math>, as desired. <math>\blacksquare</math> | ||
− | |||
Now we prove our main result. Let <math>M_1</math> and <math>M_2</math> be the respective midpoints of segments <math>BC</math> and <math>CA</math>. Then <math>M_1</math> is also the midpoint of segment <math>D_1D_2</math>, from which it follows that <math>IM_1</math> is the midline of triangle <math>D_1QD_2</math>. Hence | Now we prove our main result. Let <math>M_1</math> and <math>M_2</math> be the respective midpoints of segments <math>BC</math> and <math>CA</math>. Then <math>M_1</math> is also the midpoint of segment <math>D_1D_2</math>, from which it follows that <math>IM_1</math> is the midline of triangle <math>D_1QD_2</math>. Hence | ||
<cmath>QD_2 = 2IM_1</cmath> | <cmath>QD_2 = 2IM_1</cmath> | ||
and <math>AD_2\parallel M_1I</math>. Similarly, we can prove that <math>BE_2\parallel M_2I</math>. | and <math>AD_2\parallel M_1I</math>. Similarly, we can prove that <math>BE_2\parallel M_2I</math>. | ||
− | + | <center>[[File:2001usamo2-2.png]]</center> | |
+ | |||
Let <math>G</math> be the centroid of triangle <math>ABC</math>. Thus segments <math>AM_1</math> and <math>BM_2</math> intersect at <math>G</math>. Define transformation <math>\mathbf{H}_2</math> as the dilation with its center at <math>G</math> and ratio <math>-1/2</math>. Then <math>\mathbf{H}_2(A) = M_1</math> and <math>\mathbf{H}_2(B) = M_2</math>. Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since <math>AD_2\parallel M_1I</math> and <math>BE_2\parallel M_2I</math>, <math>\mathbf{H}_2</math> maps lines <math>AD_2</math> and <math>BE_2</math> to lines <math>M_1I</math> and <math>M_2I</math>, respectively. It also follows that <math>\mathbf{H}_2(I) = P</math> and | Let <math>G</math> be the centroid of triangle <math>ABC</math>. Thus segments <math>AM_1</math> and <math>BM_2</math> intersect at <math>G</math>. Define transformation <math>\mathbf{H}_2</math> as the dilation with its center at <math>G</math> and ratio <math>-1/2</math>. Then <math>\mathbf{H}_2(A) = M_1</math> and <math>\mathbf{H}_2(B) = M_2</math>. Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since <math>AD_2\parallel M_1I</math> and <math>BE_2\parallel M_2I</math>, <math>\mathbf{H}_2</math> maps lines <math>AD_2</math> and <math>BE_2</math> to lines <math>M_1I</math> and <math>M_2I</math>, respectively. It also follows that <math>\mathbf{H}_2(I) = P</math> and | ||
<cmath>\frac{IM_1}{AP} = \frac{GM_1}{AG} = \frac{1}{2}</cmath> | <cmath>\frac{IM_1}{AP} = \frac{GM_1}{AG} = \frac{1}{2}</cmath> |
Revision as of 20:59, 6 July 2014
Contents
[hide]Problem
Let be a triangle and let be its incircle. Denote by and the points where is tangent to sides and , respectively. Denote by and the points on sides and , respectively, such that and , and denote by the point of intersection of segments and . Circle intersects segment at two points, the closer of which to the vertex is denoted by . Prove that .
Solution
Solution 1
It is well known that the excircle opposite is tangent to at the point . (Proof: let the points of tangency of the excircle with the lines be respectively. Then . It follows that , and , so .)
Now consider the homothety that carries the incircle of to its excircle. The homothety also carries to (since are collinear), and carries the tangency points to . It follows that .
By Menelaus' Theorem on with segment , it follows that . It easily follows that .
Solution 2
The key observation is the following lemma.
Lemma: Segment is a diameter of circle .
Proof: Let be the center of circle , i.e., is the incenter of triangle . Extend segment through to intersect circle again at , and extend segment through to intersect segment at . We show that , which in turn implies that , that is, is a diameter of .
Let be the line tangent to circle at , and let intersect the segments and at and , respectively. Then is an excircle of triangle . Let denote the dilation with its center at and ratio . Since and , . Hence . Thus , , and . It also follows that an excircle of triangle is tangent to the side at .
It is well known that We compute . Let and denote the points of tangency of circle with rays and , respectively. Then by equal tangents, , , and . Hence It follows that Combining these two equations yields . Thus that is, , as desired.
Now we prove our main result. Let and be the respective midpoints of segments and . Then is also the midpoint of segment , from which it follows that is the midline of triangle . Hence and . Similarly, we can prove that .
Let be the centroid of triangle . Thus segments and intersect at . Define transformation as the dilation with its center at and ratio . Then and . Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since and , maps lines and to lines and , respectively. It also follows that and or This yields as desired.
Note: We used directed lengths in our calculations to avoid possible complications caused by the different shapes of triangle .
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.