Difference between revisions of "1970 AHSME Problems/Problem 34"

(Created page with "== Problem == The greatest integer that will divide <math>13511</math>, <math>13903</math> and <math>14589</math> and leave the same remainder is <math>\text{(A) } 28\quad \tex...")
 
(Problem)
Line 5: Line 5:
 
<math>\text{(A) } 28\quad
 
<math>\text{(A) } 28\quad
 
\text{(B) } 49\quad
 
\text{(B) } 49\quad
\text{(C) } 98\quad
+
\text{(C) } 98\quad\
\text{(D) an odd multiple of } 7 \text{ greater than } 49\quad
+
\text{(D) an odd multiple of } 7 \text{ greater than } 49\quad\
 
\text{(E) an even multiple of } 7 \text{ greater than } 98} </math>
 
\text{(E) an even multiple of } 7 \text{ greater than } 98} </math>
  

Revision as of 15:21, 2 October 2014

Problem

The greatest integer that will divide $13511$, $13903$ and $14589$ and leave the same remainder is

$\text{(A) } 28\quad \text{(B) } 49\quad \text{(C) } 98\quad\ \text{(D) an odd multiple of } 7 \text{ greater than } 49\quad\ \text{(E) an even multiple of } 7 \text{ greater than } 98}$ (Error compiling LaTeX. Unknown error_msg)

Solution

$\fbox{C}$

See also

1970 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png