Difference between revisions of "1988 AHSME Problems/Problem 1"

(Created page with "<math> \sqrt{8}+\sqrt{18}= </math> <cmath> \text{(A)}\ \sqrt{20}\qquad\text{(B)}\ 2(\sqrt{2}+\sqrt{3})\qquad\text{(C)}\ 7\qquad\text{(D)}\ 5\sqrt{2}\qquad\text{(E)}\ 2\sqrt{13} ...")
 
m
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
<math> \sqrt{8}+\sqrt{18}= </math>
 
<math> \sqrt{8}+\sqrt{18}= </math>
  
 
<cmath> \text{(A)}\ \sqrt{20}\qquad\text{(B)}\ 2(\sqrt{2}+\sqrt{3})\qquad\text{(C)}\ 7\qquad\text{(D)}\ 5\sqrt{2}\qquad\text{(E)}\ 2\sqrt{13} </cmath>
 
<cmath> \text{(A)}\ \sqrt{20}\qquad\text{(B)}\ 2(\sqrt{2}+\sqrt{3})\qquad\text{(C)}\ 7\qquad\text{(D)}\ 5\sqrt{2}\qquad\text{(E)}\ 2\sqrt{13} </cmath>
  
Solution<math> \sqrt{8} = 2 * \sqrt{2} </math>
+
==Solution==
              <math> \sqrt{18} = 3 * \sqrt{2} </math>
+
 
 +
<math> \sqrt{8} = 2 \sqrt{2} </math>
 +
 
 +
<math> \sqrt{18} = 3 \sqrt{2} </math>
 +
 
 +
So adding the two terms we get <math> 2  \sqrt{2} + 3  \sqrt{2} = 5  \sqrt{2} </math> , which corresponds to answer choice <math>\boxed{\textbf{(D)}}</math> .
 +
 
 +
 
 +
== See also ==
 +
{{AHSME box|year=1988|before=First Question|num-a=2}} 
  
So adding the two terms we get <math> 2 * \sqrt{2} + 3 * \sqrt{2} = 5 * \sqrt{2} </math> , which corresponds to answer choice \text{(D)} .
+
[[Category: Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 00:42, 23 October 2014

Problem

$\sqrt{8}+\sqrt{18}=$

\[\text{(A)}\ \sqrt{20}\qquad\text{(B)}\ 2(\sqrt{2}+\sqrt{3})\qquad\text{(C)}\ 7\qquad\text{(D)}\ 5\sqrt{2}\qquad\text{(E)}\ 2\sqrt{13}\]

Solution

$\sqrt{8} = 2  \sqrt{2}$

$\sqrt{18} = 3  \sqrt{2}$

So adding the two terms we get $2  \sqrt{2} + 3  \sqrt{2} = 5  \sqrt{2}$ , which corresponds to answer choice $\boxed{\textbf{(D)}}$ .


See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png