Difference between revisions of "1988 AHSME Problems/Problem 23"

(Created page with "==Problem== The six edges of a tetrahedron <math>ABCD</math> measure <math>7, 13, 18, 27, 36</math> and <math>41</math> units. If the length of edge <math>AB</math> is <math>41<...")
 
m (Problem)
Line 7: Line 7:
 
\textbf{(C)}\ 18\qquad
 
\textbf{(C)}\ 18\qquad
 
\textbf{(D)}\ 27\qquad
 
\textbf{(D)}\ 27\qquad
\textbf{(E)}\ 36  </math> 
+
\textbf{(E)}\ 36  \
\textbf{(E)}\ \text{more than } 7 
+
\textbf{(E)}\ \text{more than } 7  </math>
 
 
  
 
==Solution==
 
==Solution==

Revision as of 01:05, 23 October 2014

Problem

The six edges of a tetrahedron $ABCD$ measure $7, 13, 18, 27, 36$ and $41$ units. If the length of edge $AB$ is $41$, then the length of edge $CD$ is

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 13\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 27\qquad \textbf{(E)}\ 36  \\ \textbf{(E)}\ \text{more than } 7$

Solution

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png