Difference between revisions of "2009 AIME II Problems/Problem 10"

m (Solution 1)
Line 4: Line 4:
 
== Solution 1==
 
== Solution 1==
  
Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}</math>, so <math>BO</math> = <math>5x</math> and <math>CO</math> = <math>13x</math>, and <math>BO</math> + <math>OC</math> = <math>BC</math> = <math>12</math>, so <math>x</math> = <math>\frac {2}{3}</math>, and <math>OC</math> = <math>\frac {26}{3}</math>. Let <math>P</math> be the altitude from <math>D</math> to <math>OC</math>. It can be seen that triangle <math>DOP</math> is similar to triangle <math>AOB</math>, and triangle <math>DPC</math> is similar to triangle <math>ABC</math>. If <math>DP</math> = <math>15y</math>, then <math>CP</math> = <math>36y</math>, <math>OP</math> = <math>10y</math>, and <math>OD</math> = <math>5y\sqrt {13}</math>. Since <math>OP</math> + <math>CP</math> = <math>46y</math> = <math>\frac {26}{3}</math>, <math>y</math> = <math>\frac {13}{69}</math>, and <math>AD</math> = <math>\frac {60\sqrt{13}}{23}</math>. The answer is <math>60</math> + <math>13</math> + <math>23</math> = <math>\boxed{096}</math>.
+
Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}</math>, so <math>BO</math> = <math>5x</math> and <math>CO</math> = <math>13x</math>, and <math>BO</math> + <math>OC</math> = <math>BC</math> = <math>12</math>, so <math>x</math> = <math>\frac {2}{3}</math>, and <math>OC</math> = <math>\frac {26}{3}</math>. Let <math>P</math> be the foot of the altitude from <math>D</math> to <math>OC</math>. It can be seen that triangle <math>DOP</math> is similar to triangle <math>AOB</math>, and triangle <math>DPC</math> is similar to triangle <math>ABC</math>. If <math>DP</math> = <math>15y</math>, then <math>CP</math> = <math>36y</math>, <math>OP</math> = <math>10y</math>, and <math>OD</math> = <math>5y\sqrt {13}</math>. Since <math>OP</math> + <math>CP</math> = <math>46y</math> = <math>\frac {26}{3}</math>, <math>y</math> = <math>\frac {13}{69}</math>, and <math>AD</math> = <math>\frac {60\sqrt{13}}{23}</math>. The answer is <math>60</math> + <math>13</math> + <math>23</math> = <math>\boxed{096}</math>.
  
 
==Solution 2==
 
==Solution 2==

Revision as of 18:22, 26 October 2014

Four lighthouses are located at points $A$, $B$, $C$, and $D$. The lighthouse at $A$ is $5$ kilometers from the lighthouse at $B$, the lighthouse at $B$ is $12$ kilometers from the lighthouse at $C$, and the lighthouse at $A$ is $13$ kilometers from the lighthouse at $C$. To an observer at $A$, the angle determined by the lights at $B$ and $D$ and the angle determined by the lights at $C$ and $D$ are equal. To an observer at $C$, the angle determined by the lights at $A$ and $B$ and the angle determined by the lights at $D$ and $B$ are equal. The number of kilometers from $A$ to $D$ is given by $\frac {p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are relatively prime positive integers, and $r$ is not divisible by the square of any prime. Find $p$ + $q$ + $r$.


Solution 1

Let $O$ be the intersection of $BC$ and $AD$. By the Angle Bisector Theorem, $\frac {5}{BO}$ = $\frac {13}{CO}$, so $BO$ = $5x$ and $CO$ = $13x$, and $BO$ + $OC$ = $BC$ = $12$, so $x$ = $\frac {2}{3}$, and $OC$ = $\frac {26}{3}$. Let $P$ be the foot of the altitude from $D$ to $OC$. It can be seen that triangle $DOP$ is similar to triangle $AOB$, and triangle $DPC$ is similar to triangle $ABC$. If $DP$ = $15y$, then $CP$ = $36y$, $OP$ = $10y$, and $OD$ = $5y\sqrt {13}$. Since $OP$ + $CP$ = $46y$ = $\frac {26}{3}$, $y$ = $\frac {13}{69}$, and $AD$ = $\frac {60\sqrt{13}}{23}$. The answer is $60$ + $13$ + $23$ = $\boxed{096}$.

Solution 2

Extend $AB$ and $CD$ to intersect at $P$. Note that since $\angle ACB=\angle PCB$ and $\angle ABC=\angle PBC=90^{\circ}$ by ASA congruency we have $\triangle ABC\cong \triangle PBC$. Therefore $AC=PC=13$.

By the angle bisector theorem, $PD=\dfrac{130}{23}$ and $CD=\dfrac{169}{23}$. Now we apply Stewart's theorem to find $AD$:

\begin{align*}13\cdot \dfrac{130}{23}\cdot \dfrac{169}{23}+13\cdot AD^2&=13\cdot 13\cdot \dfrac{130}{23}+10\cdot 10\cdot \dfrac{169}{23}\\ 13\cdot \dfrac{130}{23}\cdot \dfrac{169}{23}+13\cdot AD^2&=\dfrac{169\cdot 130+169\cdot 100}{23}\\ 13\cdot \dfrac{130}{23}\cdot \dfrac{169}{23}+13\cdot AD^2&=1690\\ AD^2&=130-\dfrac{130\cdot 169}{23^2}\\ AD^2&=\dfrac{130\cdot 23^2-130\cdot 169}{23^2}\\ AD^2&=\dfrac{130(23^2-169)}{23^2}\\ AD^2&=\dfrac{130(360)}{23^2}\\ AD&=\dfrac{60\sqrt{13}}{23}\\ \end{align*}

and our final answer is $60+13+23=\boxed{096}$.

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png