Difference between revisions of "1970 AHSME Problems/Problem 26"

m (See also)
(Solution)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math>
+
<math>\fbox{C}</math>
  
 
== See also ==
 
== See also ==

Revision as of 21:50, 6 September 2015

Problem

The number of distinct points in the $xy$-plane common to the graphs of $(x+y-5)(2x-3y+5)=0$ and $(x-y+1)(3x+2y-12)=0$ is

$\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } 2\quad \text{(D) } 3\quad \text{(E) } 4\quad \text{(F) } \infty$

Solution

$\fbox{C}$

See also

1970 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png