Difference between revisions of "2003 AMC 10B Problems/Problem 20"

(Problem)
(Solution)
Line 32: Line 32:
  
 
==Solution==
 
==Solution==
<center><asy>
 
unitsize(8mm);
 
defaultpen(linewidth(.8pt)+fontsize(10pt));
 
dotfactor=4;
 
 
pair A=(0,0), B=(5,0), C=(5,3), D=(0,3);
 
pair F=(1,3), G=(3,3);
 
pair E=(5/3,5);
 
 
draw(A--B--C--D--cycle);
 
draw(A--E);
 
draw(B--E);
 
 
pair[] ps={A,B,C,D,E,F,G}; dot(ps);
 
label("$A$",A,SW);
 
label("$B$",B,SE);
 
label("$C$",C,NE);
 
label("$D$",D,NW);
 
label("$E$",E,N);
 
label("$F$",F,SE);
 
label("$G$",G,SW);
 
label("$1$",midpoint(D--F),N);
 
label("$2$",midpoint(G--C),N);
 
label("$5$",midpoint(A--B),S);
 
label("$3$",midpoint(A--D),W);
 
</asy></center>
 
  
 
<math>\triangle EFG \sim \triangle EAB</math> because <math>FG \parallel AB.</math> The ratio of <math>\triangle EFG</math> to <math>\triangle EAB</math> is <math>2:5</math> since <math>AB=5</math> and <math>FG=2</math> from subtraction. If we let <math>h</math> be the height of <math>\triangle EAB,</math>
 
<math>\triangle EFG \sim \triangle EAB</math> because <math>FG \parallel AB.</math> The ratio of <math>\triangle EFG</math> to <math>\triangle EAB</math> is <math>2:5</math> since <math>AB=5</math> and <math>FG=2</math> from subtraction. If we let <math>h</math> be the height of <math>\triangle EAB,</math>

Revision as of 12:04, 3 January 2016

The following problem is from both the 2003 AMC 12B #14 and 2003 AMC 10B #20, so both problems redirect to this page.

Problem

In rectangle $ABCD, AB=5$ and $BC=3$. Points $F$ and $G$ are on $\overline{CD}$ so that $DF=1$ and $GC=2$. Lines $AF$ and $BG$ intersect at $E$. Find the area of $\triangle AEB$.

[asy] unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); pair F=(1,3), G=(3,3); pair E=(5/3,5);  draw(A--B--C--D--cycle); draw(A--E); draw(B--E);  pair[] ps={A,B,C,D,E,F,G}; dot(ps); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$1$",midpoint(D--F),N); label("$2$",midpoint(G--C),N); label("$5$",midpoint(A--B),S); label("$3$",midpoint(A--D),W); [/asy]

$\textbf{(A) } 10 \qquad\textbf{(B) } \frac{21}{2} \qquad\textbf{(C) } 12 \qquad\textbf{(D) } \frac{25}{2} \qquad\textbf{(E) } 15$

Solution

$\triangle EFG \sim \triangle EAB$ because $FG \parallel AB.$ The ratio of $\triangle EFG$ to $\triangle EAB$ is $2:5$ since $AB=5$ and $FG=2$ from subtraction. If we let $h$ be the height of $\triangle EAB,$

\[\frac{2}{5} = \frac{h-3}{h}\] \[2h = 5h-15\] \[3h = 15\] \[h = 5\]

The height is $5$ so the area of $\triangle EAB$ is $\frac{1}{2}(5)(5) = \boxed{\textbf{(D)}\ \frac{25}{2}}$.

See Also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png