Difference between revisions of "1996 AIME Problems/Problem 4"

(Solution)
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
$<center><asy>
+
<asy>
 
import three;
 
import three;
 
size(250);defaultpen(0.7+fontsize(9));
 
size(250);defaultpen(0.7+fontsize(9));
Line 13: Line 13:
 
draw(P--(r*unit,0,0)--(r*unit,r*unit,0)--(0,r*unit,0)--P); draw(P--(r*unit,r*unit,0)); draw((r*unit,0,0)--(0,0,0)--(0,r*unit,0));
 
draw(P--(r*unit,0,0)--(r*unit,r*unit,0)--(0,r*unit,0)--P); draw(P--(r*unit,r*unit,0)); draw((r*unit,0,0)--(0,0,0)--(0,r*unit,0));
 
draw(P--(0,0,unit)--(unit,0,unit)--(unit,0,0)--(r*unit,0,0)--P,dashed+blue+linewidth(0.8));
 
draw(P--(0,0,unit)--(unit,0,unit)--(unit,0,0)--(r*unit,0,0)--P,dashed+blue+linewidth(0.8));
draw(rightanglemark(P,(0,0,unit),(unit,0,unit),1.7));draw(rightanglemark((unit,0,unit),(unit,0,0),(r*unit,0,0),1.7));
 
 
label("$x$",(0,0,unit+unit/(r-1)/2),WSW);
 
label("$x$",(0,0,unit+unit/(r-1)/2),WSW);
 
label("$1$",(unit/2,0,unit),N);
 
label("$1$",(unit/2,0,unit),N);
Line 20: Line 19:
 
label("$6$",(unit*(r+1)/2,0,0),N);
 
label("$6$",(unit*(r+1)/2,0,0),N);
 
label("$7$",(unit*r,unit*r/2,0),SW);
 
label("$7$",(unit*r,unit*r/2,0),SW);
</asy></center><math>
+
</asy>
(Figure not to scale) The area of the square shadow base is </math>48 + 1 = 49<math>, and so the sides of the shadow are </math>7<math>. Using the similar triangles in blue,  
+
(Figure not to scale) The area of the square shadow base is <math>48 + 1 = 49</math>, and so the sides of the shadow are <math>7</math>. Using the similar triangles in blue,  
</math>\frac {x}{1} = \frac {1}{6}<math>, and </math>\left\lfloor 1000x \right\rfloor = \boxed{166}$.
+
<math>\frac {x}{1} = \frac {1}{6}</math>, and <math>\left\lfloor 1000x \right\rfloor = \boxed{166}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 16:50, 4 January 2016

Problem

A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is $x$ centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of the shadow, which does not include the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed $1000x$.

Solution

[asy] import three; size(250);defaultpen(0.7+fontsize(9)); real unit = 0.5;  real r = 2.8; triple O=(0,0,0), P=(0,0,unit+unit/(r-1)); dot(P); draw(O--P); draw(O--(unit,0,0)--(unit,0,unit)--(0,0,unit)); draw(O--(0,unit,0)--(0,unit,unit)--(0,0,unit)); draw((unit,0,0)--(unit,unit,0)--(unit,unit,unit)--(unit,0,unit)); draw((0,unit,0)--(unit,unit,0)--(unit,unit,unit)--(0,unit,unit));  draw(P--(r*unit,0,0)--(r*unit,r*unit,0)--(0,r*unit,0)--P); draw(P--(r*unit,r*unit,0)); draw((r*unit,0,0)--(0,0,0)--(0,r*unit,0)); draw(P--(0,0,unit)--(unit,0,unit)--(unit,0,0)--(r*unit,0,0)--P,dashed+blue+linewidth(0.8)); label("$x$",(0,0,unit+unit/(r-1)/2),WSW); label("$1$",(unit/2,0,unit),N); label("$1$",(unit,0,unit/2),W); label("$1$",(unit/2,0,0),N); label("$6$",(unit*(r+1)/2,0,0),N); label("$7$",(unit*r,unit*r/2,0),SW); [/asy] (Figure not to scale) The area of the square shadow base is $48 + 1 = 49$, and so the sides of the shadow are $7$. Using the similar triangles in blue, $\frac {x}{1} = \frac {1}{6}$, and $\left\lfloor 1000x \right\rfloor = \boxed{166}$.

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png