Difference between revisions of "1992 AHSME Problems/Problem 6"

(Added solution)
 
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
We see that this fraction can easily be factored as <math>\frac{x^y}{y^y}\times\frac{y^x}{x^x}</math>. Since <math>\frac{y^x}{x^x}=\frac{x^{-x}}{y^{-x}}</math>, this fraction is equivalent to <math>(\frac{x}{y})^y\times(\frac{x}{y})^{-x}=(\frac{x}{y})^{y-x}</math>, which corresponds to answer choice <math>\fbox{D}</math>.
+
We see that this fraction can easily be factored as <math>\frac{x^y}{y^y}\times\frac{y^x}{x^x}</math>. Since <math>\frac{y^x}{x^x}=\frac{x^{-x}}{y^{-x}}</math>, this fraction is equivalent to <math>\left(\frac{x}{y}\right)^y\times\left(\frac{x}{y}\right)^{-x}=\left(\frac{x}{y}\right)^{y-x}\quad</math>, which corresponds to answer choice <math>\fbox{D}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 21:51, 4 October 2016

Problem

If $x>y>0$ , then $\frac{x^y y^x}{y^y x^x}=$


$\text{(A) } (x-y)^{y/x}\quad \text{(B) } \left(\frac{x}{y}\right)^{x-y}\quad \text{(C) } 1\quad \text{(D) } \left(\frac{x}{y}\right)^{y-x}\quad \text{(E) } (x-y)^{x/y}$

Solution

We see that this fraction can easily be factored as $\frac{x^y}{y^y}\times\frac{y^x}{x^x}$. Since $\frac{y^x}{x^x}=\frac{x^{-x}}{y^{-x}}$, this fraction is equivalent to $\left(\frac{x}{y}\right)^y\times\left(\frac{x}{y}\right)^{-x}=\left(\frac{x}{y}\right)^{y-x}\quad$, which corresponds to answer choice $\fbox{D}$.

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png