Difference between revisions of "2001 AIME I Problems/Problem 7"
(→Solution) |
Hyperspace01 (talk | contribs) (→Solution 3 (mass points)) |
||
Line 52: | Line 52: | ||
Using the [[angle bisector theorem]], we know the ratio <math>BF:CF</math> is <math>21:22</math>, thus we shall assign a weight of <math>22</math> to point <math>B</math> and a weight of <math>21</math> to point <math>C</math>, giving <math>F</math> a weight of <math>43</math>. In the same manner, using another bisector, we find that <math>A</math> has a weight of <math>20</math>. So, now we know <math>P</math> has a weight of <math>63</math>, and the ratio of <math>FP:PA</math> is <math>20:43</math>. Therefore, the smaller similar triangle <math>ADE</math> is <math>43/63</math> the height of the original triangle <math>ABC</math>. So, <math>DE</math> is <math>43/63</math> the size of <math>BC</math>. Multiplying this ratio by the length of <math>BC</math>, we find <math>DE</math> is <math>860/63 = m/n</math>. Therefore, <math>m+n=\boxed{923}</math>. | Using the [[angle bisector theorem]], we know the ratio <math>BF:CF</math> is <math>21:22</math>, thus we shall assign a weight of <math>22</math> to point <math>B</math> and a weight of <math>21</math> to point <math>C</math>, giving <math>F</math> a weight of <math>43</math>. In the same manner, using another bisector, we find that <math>A</math> has a weight of <math>20</math>. So, now we know <math>P</math> has a weight of <math>63</math>, and the ratio of <math>FP:PA</math> is <math>20:43</math>. Therefore, the smaller similar triangle <math>ADE</math> is <math>43/63</math> the height of the original triangle <math>ABC</math>. So, <math>DE</math> is <math>43/63</math> the size of <math>BC</math>. Multiplying this ratio by the length of <math>BC</math>, we find <math>DE</math> is <math>860/63 = m/n</math>. Therefore, <math>m+n=\boxed{923}</math>. | ||
+ | |||
+ | == Solution 4 ([[Quicker]]) == | ||
+ | |||
+ | More directly than Solution 2, we have <cmath>DE=BC\left(\frac{h_a-r}{h_a}\right)=20\left(1-\frac{r}{\frac{[ABC]}{\frac{BC}{2}}}\right)=20\left(1-\frac{10r}{sr}\right)=20\left(1-\frac{10}{\frac{63}{2}}\right)=\frac{860}{63}\implies \boxed{923}.</cmath> | ||
== See also == | == See also == |
Revision as of 22:05, 31 October 2016
Problem
Triangle has , and . Points and are located on and , respectively, such that is parallel to and contains the center of the inscribed circle of triangle . Then , where and are relatively prime positive integers. Find .
Contents
[hide]Solution 1
Let be the incenter of , so that and are angle bisectors of and respectively. Then, so is isosceles, and similarly is isosceles. It follows that , so the perimeter of is . Hence, the ratio of the perimeters of and is , which is the scale factor between the two similar triangles, and thus . Thus, .
Solution 2
The semiperimeter of is . By Heron's formula, the area of the whole triangle is . Using the formula , we find that the inradius is . Since , the ratio of the heights of triangles and is equal to the ratio between sides and . From , we find . Thus, we have
Solving for gives so the answer is .
Or we have the area of the triangle as . Using the ratio of heights to ratio of bases of and from that it is easy to deduce that .
Solution 3 (mass points)
Let be the incircle; then it is be the intersection of all three angle bisectors. Draw the bisector to where it intersects , and name the intersection .
Using the angle bisector theorem, we know the ratio is , thus we shall assign a weight of to point and a weight of to point , giving a weight of . In the same manner, using another bisector, we find that has a weight of . So, now we know has a weight of , and the ratio of is . Therefore, the smaller similar triangle is the height of the original triangle . So, is the size of . Multiplying this ratio by the length of , we find is . Therefore, .
Solution 4 (Quicker)
More directly than Solution 2, we have
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.