Difference between revisions of "2011 AMC 8 Problems/Problem 2"

m (See Also)
 
(3 intermediate revisions by 3 users not shown)
Line 14: Line 14:
 
==Solution==
 
==Solution==
  
The area of a rectangle is given by the formula length times width. Karl's garden is <math>20 \times 45 = 900</math> square feet and Makenna's garden is <math>25 \times 40 = 1000</math> square feet. Since <math>1000 > 900,</math> Makenna's garden is larger by <math>1000-900=100</math> square feet. <math>\Rightarrow \boxed{\textbf{(E)}}</math>
+
The area of a rectangle is given by the formula length times width. Karl's garden is <math>20 \times 45 = 900</math> square feet and Makenna's garden is <math>25 \times 40 = 1000</math> square feet. Since <math>1000 > 900,</math> Makenna's garden is larger by <math>1000-900=100</math> square feet. <math>\Rightarrow \boxed{ \textbf{(E)}\ \text{Makenna's garden is larger by 100 square feet.} }</math>
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2011|num-b=1|num-a=3}}
 
{{AMC8 box|year=2011|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 11:35, 13 November 2016

Problem

Karl's rectangular vegetable garden is $20$ feet by $45$ feet, and Makenna's is $25$ feet by $40$ feet. Whose garden is larger in area?

$\textbf{(A)}\ \text{Karl's garden is larger by 100 square feet.}$

$\textbf{(B)}\ \text{Karl's garden is larger by 25 square feet.}$

$\textbf{(C)}\ \text{The gardens are the same size.}$

$\textbf{(D)}\ \text{Makenna's garden is larger by 25 square feet.}$

$\textbf{(E)}\ \text{Makenna's garden is larger by 100 square feet.}$

Solution

The area of a rectangle is given by the formula length times width. Karl's garden is $20 \times 45 = 900$ square feet and Makenna's garden is $25 \times 40 = 1000$ square feet. Since $1000 > 900,$ Makenna's garden is larger by $1000-900=100$ square feet. $\Rightarrow \boxed{ \textbf{(E)}\ \text{Makenna's garden is larger by 100 square feet.} }$

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png