Difference between revisions of "2009 AIME II Problems/Problem 10"
Puzzled417 (talk | contribs) (→Solution 1) |
|||
Line 23: | Line 23: | ||
and our final answer is <math>60+13+23=\boxed{096}</math>. | and our final answer is <math>60+13+23=\boxed{096}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Notice that by extending <math>AB</math> and <math>CD</math> to meet at a point <math>E</math>, <math>\triangle ACE</math> is isosceles. Now we can do a straightforward coordinate bash. Let <math>C=(0,0)</math>, <math>B=(12,0)</math>, <math>E=(12,-5)</math> and <math>A=(12,5)</math>, and the equation of line <math>CD</math> is <math>y=-\dfrac{5}{12}x</math>. Let F be the intersection point of <math>AD</math> and <math>BC</math>, and by using the Angle Bisector Theorem: <math>\dfrac{BF}{AB}=\dfrac{FC}{AC}</math> we have <math>FC=\dfrac{26}{3}</math>. Then the equation of the line <math>AF</math> through the points <math>(12,5)</math> and <math>\left(\frac{26}{3},0\right)</math> is <math>y=\frac32 x-13</math>. Hence the intersection point of <math>AF</math> and <math>CD</math> is the point <math>D</math> at the coordinates <math>\left(\dfrac{156}{23},-\dfrac{65}{23}\right)</math>. Using the distance formula, <math>AD=\sqrt{\left(12-\dfrac{156}{23}\right)^2+\left(5+\dfrac{65}{23}\right)^2}=\dfrac{60\sqrt{13}}{23}</math> for an answer of <math>60+13+23=\fbox{096}</math>. | ||
+ | |||
== See Also == | == See Also == | ||
{{AIME box|year=2009|n=II|num-b=9|num-a=11}} | {{AIME box|year=2009|n=II|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:10, 21 January 2017
Four lighthouses are located at points , , , and . The lighthouse at is kilometers from the lighthouse at , the lighthouse at is kilometers from the lighthouse at , and the lighthouse at is kilometers from the lighthouse at . To an observer at , the angle determined by the lights at and and the angle determined by the lights at and are equal. To an observer at , the angle determined by the lights at and and the angle determined by the lights at and are equal. The number of kilometers from to is given by , where , , and are relatively prime positive integers, and is not divisible by the square of any prime. Find + + .
Contents
Solution 1
Let be the intersection of and . By the Angle Bisector Theorem, = , so = and = , and + = = , so = , and = . Let be the foot of the altitude from to . It can be seen that triangle is similar to triangle , and triangle is similar to triangle . If = , then = , = , and = . Since + = = , = , and = (by the pythagorean theorem on triangle we sum and ). The answer is + + = .
Solution 2
Extend and to intersect at . Note that since and by ASA congruency we have . Therefore .
By the angle bisector theorem, and . Now we apply Stewart's theorem to find :
and our final answer is .
Solution 3
Notice that by extending and to meet at a point , is isosceles. Now we can do a straightforward coordinate bash. Let , , and , and the equation of line is . Let F be the intersection point of and , and by using the Angle Bisector Theorem: we have . Then the equation of the line through the points and is . Hence the intersection point of and is the point at the coordinates . Using the distance formula, for an answer of .
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.