Difference between revisions of "2009 AIME II Problems/Problem 10"
Puzzled417 (talk | contribs) (→Solution 1) |
|||
Line 23: | Line 23: | ||
and our final answer is <math>60+13+23=\boxed{096}</math>. | and our final answer is <math>60+13+23=\boxed{096}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Notice that by extending <math>AB</math> and <math>CD</math> to meet at a point <math>E</math>, <math>\triangle ACE</math> is isosceles. Now we can do a straightforward coordinate bash. Let <math>C=(0,0)</math>, <math>B=(12,0)</math>, <math>E=(12,-5)</math> and <math>A=(12,5)</math>, and the equation of line <math>CD</math> is <math>y=-\dfrac{5}{12}x</math>. Let F be the intersection point of <math>AD</math> and <math>BC</math>, and by using the Angle Bisector Theorem: <math>\dfrac{BF}{AB}=\dfrac{FC}{AC}</math> we have <math>FC=\dfrac{26}{3}</math>. Then the equation of the line <math>AF</math> through the points <math>(12,5)</math> and <math>\left(\frac{26}{3},0\right)</math> is <math>y=\frac32 x-13</math>. Hence the intersection point of <math>AF</math> and <math>CD</math> is the point <math>D</math> at the coordinates <math>\left(\dfrac{156}{23},-\dfrac{65}{23}\right)</math>. Using the distance formula, <math>AD=\sqrt{\left(12-\dfrac{156}{23}\right)^2+\left(5+\dfrac{65}{23}\right)^2}=\dfrac{60\sqrt{13}}{23}</math> for an answer of <math>60+13+23=\fbox{096}</math>. | ||
+ | |||
== See Also == | == See Also == | ||
{{AIME box|year=2009|n=II|num-b=9|num-a=11}} | {{AIME box|year=2009|n=II|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:10, 21 January 2017
Four lighthouses are located at points ,
,
, and
. The lighthouse at
is
kilometers from the lighthouse at
, the lighthouse at
is
kilometers from the lighthouse at
, and the lighthouse at
is
kilometers from the lighthouse at
. To an observer at
, the angle determined by the lights at
and
and the angle determined by the lights at
and
are equal. To an observer at
, the angle determined by the lights at
and
and the angle determined by the lights at
and
are equal. The number of kilometers from
to
is given by
, where
,
, and
are relatively prime positive integers, and
is not divisible by the square of any prime. Find
+
+
.
Contents
[hide]Solution 1
Let be the intersection of
and
. By the Angle Bisector Theorem,
=
, so
=
and
=
, and
+
=
=
, so
=
, and
=
. Let
be the foot of the altitude from
to
. It can be seen that triangle
is similar to triangle
, and triangle
is similar to triangle
. If
=
, then
=
,
=
, and
=
. Since
+
=
=
,
=
, and
=
(by the pythagorean theorem on triangle
we sum
and
). The answer is
+
+
=
.
Solution 2
Extend and
to intersect at
. Note that since
and
by ASA congruency we have
. Therefore
.
By the angle bisector theorem, and
. Now we apply Stewart's theorem to find
:
and our final answer is .
Solution 3
Notice that by extending and
to meet at a point
,
is isosceles. Now we can do a straightforward coordinate bash. Let
,
,
and
, and the equation of line
is
. Let F be the intersection point of
and
, and by using the Angle Bisector Theorem:
we have
. Then the equation of the line
through the points
and
is
. Hence the intersection point of
and
is the point
at the coordinates
. Using the distance formula,
for an answer of
.
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.