Difference between revisions of "2017 AMC 12A Problems/Problem 16"
Antmath2520 (talk | contribs) |
Toffeecube (talk | contribs) (→Solution) |
||
Line 20: | Line 20: | ||
\qquad\textbf{(E)}\ \frac{11}{12} </math> | \qquad\textbf{(E)}\ \frac{11}{12} </math> | ||
− | ==Solution== | + | ==Solution 1== |
Connect the centers of the tangent circles! (call the center of the large circle <math>C</math>) | Connect the centers of the tangent circles! (call the center of the large circle <math>C</math>) | ||
Line 64: | Line 64: | ||
NOTICE to proficient editors: please label the points on the diagrams, thanks! | NOTICE to proficient editors: please label the points on the diagrams, thanks! | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | <asy> | ||
+ | size(5cm); | ||
+ | draw(arc((0,0),3,0,180)); | ||
+ | draw(arc((2,0),1,0,180)); | ||
+ | draw(arc((-1,0),2,0,180)); | ||
+ | draw((-3,0)--(3,0)); | ||
+ | pair P = (9/7,12/7); | ||
+ | draw(circle(P,6/7)); | ||
+ | dot((-1,0)); dot((2,0)); dot((0,0)); dot(P); | ||
+ | draw((-1,0)--P); | ||
+ | draw((2,0)--P); | ||
+ | draw((0,0)--(9/5,12/5)); | ||
+ | </asy> | ||
+ | |||
+ | Like the solution above, connecting the centers of the circles results in triangle <math>\Delta ABP</math> with cevian <math>PC</math>. The two triangles <math>\Delta APC</math> and <math>\Delta ABP</math> share angle <math>A</math>, which means we can use Law of Cosines to set up a system of 2 equations that solve for <math>r</math> respectively: | ||
+ | |||
+ | <math>(2 + r)^2 + 1^2 - 2(2 + r)(1)cosA = (3 - r)^2</math> (notice that the diameter of the largest semicircle is 6, so its radius is 3 and <math>PC</math> is 3 - r) | ||
+ | |||
+ | <math>(2 + r)^2 + 3^2 - 2(2 + r)(3)cosA = (r+1)^2</math> | ||
+ | |||
+ | We can eliminate the extra variable of angle <math>A</math> by multiplying the first equation by 3 and subtracting the second from it. Then, expand to find <math>r</math>: | ||
+ | |||
+ | <math>2(r^2 + 4r + 4) - 6 = 2r^2 - 20r + 26</math> | ||
+ | <math>8r + 2 = -20r + 26</math> | ||
+ | <math>28r = 24</math>, so <math>r</math> = <math>6/7</math> {\textbf{(B)}} | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=A|num-b=15|num-a=17}} | {{AMC12 box|year=2017|ab=A|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:12, 8 February 2017
Contents
Problem
In the figure below, semicircles with centers at and and with radii 2 and 1, respectively, are drawn in the interior of, and sharing bases with, a semicircle with diameter . The two smaller semicircles are externally tangent to each other and internally tangent to the largest semicircle. A circle centered at is drawn externally tangent to the two smaller semicircles and internally tangent to the largest semicircle. What is the radius of the circle centered at ?
Solution 1
Connect the centers of the tangent circles! (call the center of the large circle )
Notice that we don't even need the circles anymore; thus, draw triangle with cevian :
and use Stewart's Theorem:
From what we learned from the tangent circles, we have , , , , , and , where is the radius of the circle centered at that we seek.
Thus:
NOTICE to proficient editors: please label the points on the diagrams, thanks!
Solution 2
Like the solution above, connecting the centers of the circles results in triangle with cevian . The two triangles and share angle , which means we can use Law of Cosines to set up a system of 2 equations that solve for respectively:
(notice that the diameter of the largest semicircle is 6, so its radius is 3 and is 3 - r)
We can eliminate the extra variable of angle by multiplying the first equation by 3 and subtracting the second from it. Then, expand to find :
, so = {\textbf{(B)}}
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.