Difference between revisions of "2017 AMC 12A Problems/Problem 17"

(Solution 2)
(Solution)
Line 5: Line 5:
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 24 </math>
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 24 </math>
  
==Solution==
+
==Solution 1==
  
 
Note that these <math>z</math> such that <math>z^{24}=1</math> are <math>e^{\frac{ni\pi}{12}}</math> for integer <math>0\leq n<24</math>. So
 
Note that these <math>z</math> such that <math>z^{24}=1</math> are <math>e^{\frac{ni\pi}{12}}</math> for integer <math>0\leq n<24</math>. So
Line 12: Line 12:
  
 
This is real iff <math>\frac{n}{2}\in \mathbb{Z} \Leftrightarrow (n</math> is even<math>)</math>. Thus, the answer is the number of even <math>0\leq n<24</math> which is <math>\boxed{(D)=\ 12}</math>.
 
This is real iff <math>\frac{n}{2}\in \mathbb{Z} \Leftrightarrow (n</math> is even<math>)</math>. Thus, the answer is the number of even <math>0\leq n<24</math> which is <math>\boxed{(D)=\ 12}</math>.
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 01:45, 9 February 2017

Problem

There are $24$ different complex numbers $z$ such that $z^{24}=1$. For how many of these is $z^6$ a real number?

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 24$

Solution 1

Note that these $z$ such that $z^{24}=1$ are $e^{\frac{ni\pi}{12}}$ for integer $0\leq n<24$. So

$z^6=e^{\frac{ni\pi}{2}}$

This is real iff $\frac{n}{2}\in \mathbb{Z} \Leftrightarrow (n$ is even$)$. Thus, the answer is the number of even $0\leq n<24$ which is $\boxed{(D)=\ 12}$.

Solution 2

$z = \sqrt[24]{1} = 1^{\frac{1}{24}}$

By Euler's identity, $1 = e^{0 \cdot i} = cos (0+2k\pi) + i sin(0+2k\pi)$, where $k$ is an integer.

Using De Moivre's Theorem, we have $z = 1^{\frac{1}{24}} = {cos (\frac{k\pi}{12}) + i sin (\frac{k\pi}{12})}$, where $0 \leq k<24$ that produce $24$ unique results.

Using De Moivre's Theorem again, we have $z^6 = {cos (\frac{k\pi}{2}) + i sin (\frac{k\pi}{2})}$

For $z^6$ to be real, $sin(\frac{k\pi}{2})$ has to equal $0$ to negate the imaginary component. This occurs whenever $\frac{k\pi}{2}$ is an integer multiple of $\pi$, requiring that $k$ is even. There are exactly $\boxed{12}$ even values of $k$ on the interval $0 \leq k<24$, so the answer is $\boxed{(D)}$.

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png