Difference between revisions of "2016 AMC 10B Problems/Problem 20"
O o o-o o o (talk | contribs) m (→Solution 2: Geometric) |
O o o-o o o (talk | contribs) (→Solution 2: Geometric) |
||
Line 14: | Line 14: | ||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7., xmax = 9., ymin = -7., ymax = 9.6; /* image dimensions */ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7., xmax = 9., ymin = -7., ymax = 9.6; /* image dimensions */ | ||
− | pen xdxdff = rgb(0.49019607843137253, | + | pen xdxdff = rgb(0.49019607843137253,50.49019607843137253,1.); pen uuuuuu = rgb(0.666666666,0.26666666666666666,0.26666666666666666); pen qqzzff = rgb(0.,0.6,1.); pen ffwwqq = rgb(1.,0.4,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.); |
− | pair O = ( | + | pair O = (3.,0.), A = (6.,2.), B = (2.,1.), C = (4.203155585,5.592712848525), D = (5.,4.), F = (-3.999634206191805,-5.999512274922407), G = (-3.999634206191812,-5.9995122749224175); |
/* by adihaya */ | /* by adihaya */ | ||
− | draw((2.482656878,0.)--( | + | draw((2.482656878,0.)---(4.482568783,0.48268779)--(2.,0.48272202065687797)--B--cycle, qqwuqq); |
− | draw((5.482722020656878,0.)--(7.4827220878, | + | draw((5.482722020656878,0.)--(7.4827220878,1.48277797)--(5.,0.48272687797)--(5.,0.)--cycle, qqwuqq); |
Label laxis; laxis.p = fontsize(10); | Label laxis; laxis.p = fontsize(10); | ||
xaxis(xmin, xmax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); | xaxis(xmin, xmax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); |
Revision as of 16:17, 4 February 2018
Contents
Problem
A dilation of the plane—that is, a size transformation with a positive scale factor—sends the circle of radius centered at to the circle of radius centered at . What distance does the origin , move under this transformation?
Solution 1: Algebraic
The center of dilation must lie on the line , which can be expressed . Also, the ratio of dilation must be equal to , which is the ratio of the radii of the circles. Thus, we are looking for a point such that (for the -coordinates), and . Solving these, we get and . This means that any point on the plane will dilate to the point , which means that the point dilates to . Thus, the origin moves units.
Solution 2: Geometric
Using analytic geometry, we find that the center of dilation is at and the coefficient/factor is . Then, we see that the origin is from the center, and will be from it afterwards.
Thus, it will move .
Solution 3: Logic and Geometry
Using the ratios of radii of the circles, , we find that the scale factor is . If the origin had not moved, this indicates that the center of the circle would be , simply because of . Since the center has moved from to , we apply the distance formula and get: .
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.