Difference between revisions of "2016 AMC 10B Problems/Problem 19"
Ilovemath04 (talk | contribs) m (→Solution 2 (Coordinate Geometry)) |
Mathnerd0120 (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Rectangle <math>ABCD</math> has <math>AB=5</math> and <math>BC=4</math>. Point <math>E</math> lies on <math>\overline{AB}</math> so that <math>EB=1</math>, point <math>G</math> lies on <math>\overline{BC}</math> so that <math>CG=1</math> | + | Rectangle <math>ABCD</math> has <math>AB=5</math> and <math>BC=4</math>. Point <math>E</math> lies on <math>\overline{AB}</math> so that <math>EB=1</math>, point <math>G</math> lies on <math>\overline{BC}</math> so that <math>CG=1</math>, and point <math>F</math> lies on <math>\overline{CD}</math> so that <math>DF=2</math>. Segments <math>\overline{AG}</math> and <math>\overline{AC}</math> intersect <math>\overline{EF}</math> at <math>Q</math> and <math>P</math>, respectively. What is the value of <math>\frac{PQ}{EF}</math>? |
Line 26: | Line 26: | ||
\textbf{(D)}~\frac{10}{91}\qquad | \textbf{(D)}~\frac{10}{91}\qquad | ||
\textbf{(E)}~\frac19</math> | \textbf{(E)}~\frac19</math> | ||
− | |||
==Solution 1 (Answer Choices)== | ==Solution 1 (Answer Choices)== |
Revision as of 19:16, 9 February 2018
Contents
[hide]Problem
Rectangle has and . Point lies on so that , point lies on so that , and point lies on so that . Segments and intersect at and , respectively. What is the value of ?
Solution 1 (Answer Choices)
Since the opposite sides of a rectangle are parallel and due to vertical angles, . Furthermore, the ratio between the side lengths of the two triangles is . Labeling and , we see that turns out to be equal to . Since the denominator of must now be a multiple of 7, the only possible solution in the answer choices is .
Solution 2 (Coordinate Geometry)
First, we will define point as the origin. Then, we will find the equations of the following three lines: , , and . The slopes of these lines are , , and , respectively. Next, we will find the equations of , , and . They are as follows: After drawing in altitudes to from , , and , we see that because of similar triangles, and so we only need to find the x-coordinates of and . Finding the intersections of and , and and gives the x-coordinates of and to be and . This means that . Now we can find
Solution 3 (Similar Triangles)
Extend to intersect at . Letting , we have that
Then, notice that and . Thus, we see that and Thus, we see that
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.