Difference between revisions of "2018 AMC 10B Problems/Problem 10"
(→Solution 4 (Vectors)) |
(→Solution 5 (slicker method)) |
||
Line 64: | Line 64: | ||
==Solution 5 (slicker method)== | ==Solution 5 (slicker method)== | ||
− | + | IMPORTANT: This solution assumed that the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution didn't work. Sorry MathloverMC | |
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 18:47, 17 February 2018
Contents
[hide]Problem
In the rectangular parallelpiped shown, = , = , and = . Point is the midpoint of . What is the volume of the rectangular pyramid with base and apex ?
Solution 1
Consider the cross-sectional plane, and label it as b. Note that and we want , so the answer is . (AOPS12142015)
IMPORTANT: This is assuming the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution doesn't work.
Solution 2
IMPORTANT: This solution assumed that the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution didn't work. Sorry Adarshk.
Solution 3
IMPORTANT: This solution assumed that the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution didn't work. Sorry Archimedes15.
Solution 4 (Vectors)
IMPORTANT: This solution assumed that the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution didn't work. Sorry SS4. .
Solution 5 (slicker method)
IMPORTANT: This solution assumed that the parallelepiped is a rectangular prism, which isn't correct. All we know is that each side is a parallelogram, so this solution didn't work. Sorry MathloverMC
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.