Difference between revisions of "2018 AMC 10B Problems/Problem 17"

m (Solution 2)
Line 16: Line 16:
  
 
== Solution 2 ==
 
== Solution 2 ==
Denote the length of the equilateral octagon as <math>x</math>. The length of <math>\overline{BQ}</math> can be expressed as <math>\frac{8-x}{2}</math>. By Pythagoras, we find that: <math>\left(\frac{8-x}{2}\right)^2+\overline{CQ}^2=x^2\implies \overline{CQ}=\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}</math>. Since <math>\overline{CQ}=\overline{DR}</math>, we can say that <math>x+2\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}=6\implies x=-7\pm3\sqrt{11}</math>. We can discard the negative solutions, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) 7}}</math>
+
Denote the length of the equilateral octagon as <math>x</math>. The length of <math>\overline{BQ}</math> can be expressed as <math>\frac{8-x}{2}</math>. By Pythagoras, we find that:
 +
<cmath>\left(\frac{8-x}{2}\right)^2+\overline{CQ}^2=x^2\implies \overline{CQ}=\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}</cmath>  
 +
Since <math>\overline{CQ}=\overline{DR}</math>, we can say that <math>x+2\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}=6\implies x=-7\pm3\sqrt{11}</math>. We can discard the negative solution, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) }7}</math>
  
 
==See Also==
 
==See Also==

Revision as of 17:07, 18 February 2018

Problem

In rectangle $PQRS$, $PQ=8$ and $QR=6$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, points $E$ and $F$ lie on $\overline{RS}$, and points $G$ and $H$ lie on $\overline{SP}$ so that $AP=BQ<4$ and the convex octagon $ABCDEFGH$ is equilateral. The length of a side of this octagon can be expressed in the form $k+m\sqrt{n}$, where $k$, $m$, and $n$ are integers and $n$ is not divisible by the square of any prime. What is $k+m+n$?

$\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106$

Solution 1

Let $AP=BQ=x$. Then $AB=8-2x$.

Now notice that since $CD=8-2x$ we have $QC=DR=x-1$.

Thus by the Pythagorean Theorem we have $x^2+(x-1)^2=(8-2x)^2$ which becomes $2x^2-30x+63=0\implies x=\dfrac{15-3\sqrt{11}}{2}$.

Our answer is $8-(15-3\sqrt{11})=3\sqrt{11}-7\implies \boxed{\text{(B)}~7}$. (Mudkipswims42)

Solution 2

Denote the length of the equilateral octagon as $x$. The length of $\overline{BQ}$ can be expressed as $\frac{8-x}{2}$. By Pythagoras, we find that:

\[\left(\frac{8-x}{2}\right)^2+\overline{CQ}^2=x^2\implies \overline{CQ}=\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}\] 

Since $\overline{CQ}=\overline{DR}$, we can say that $x+2\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}=6\implies x=-7\pm3\sqrt{11}$. We can discard the negative solution, so $k+m+n=-7+3+11=\boxed{\textbf{(B) }7}$

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png