Difference between revisions of "2004 AIME I Problems/Problem 7"
Mathwiz0803 (talk | contribs) (→Solution 3 (Bash)) |
(→Solution 3 (Bash)) |
||
Line 25: | Line 25: | ||
Consider the set <math>[-1, 2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15]</math>. Denote by <math>S</math> all size 2 subsets of this set. Replace each element of <math>S</math> by the product of the elements. Now, the quantity we seek is the sum of each element. Since consecutive elements add to <math>1</math> or <math>-1</math>, we can simplify this to <math>|-1\cdot(-7)+2\cdot(-9)-3\cdot(-6)+4\cdot(-10)-5\cdot(-5)+\ldots+12\cdot(-14)-13\cdot(-1)+14\cdot(-15)|=|-588|=\boxed{588}</math>. | Consider the set <math>[-1, 2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15]</math>. Denote by <math>S</math> all size 2 subsets of this set. Replace each element of <math>S</math> by the product of the elements. Now, the quantity we seek is the sum of each element. Since consecutive elements add to <math>1</math> or <math>-1</math>, we can simplify this to <math>|-1\cdot(-7)+2\cdot(-9)-3\cdot(-6)+4\cdot(-10)-5\cdot(-5)+\ldots+12\cdot(-14)-13\cdot(-1)+14\cdot(-15)|=|-588|=\boxed{588}</math>. | ||
+ | |||
+ | ==Solution 4== | ||
+ | Let set <math>N</math> be <math>\{-1, -3, \ldots -15\}</math> and set <math>P</math> be <math>\{2, 4, \ldots 14\}</math>. The sum of the negative <math>x^2</math> coefficients is the sum of the products of the elements in all two element sets such that one element is from <math>N</math> and the other is from <math>P</math>. Each summand is a term in the expansion of | ||
+ | <cmath>(-1 - 3 - \ldots - 15)(2 + 4 + \ldots + 14)</cmath> | ||
+ | which equals <math>-56 * 64 = -(60^2 - 4^2) = -3584</math>. The sum of the positive <math>x^2</math> coefficients is the sum of the products of all two element sets such that the two elements are either both in <math>N</math> or both in <math>P</math>. By counting, the sum is <math>2992</math>, so the sum of all <math>x^2</math> coefficients is <math>-588</math>. Thus, the answer is <math>\boxed{588}</math>. | ||
== See also == | == See also == |
Revision as of 17:00, 30 March 2018
Problem
Let be the coefficient of in the expansion of the product Find
Contents
[hide]Solution
Solution 1
Let our polynomial be .
It is clear that the coefficient of in is , so , where is some polynomial divisible by .
Then and so , where is some polynomial divisible by .
However, we also know .
Equating coefficients, we have , so and .
Solution 2
Let be the set of integers . The coefficient of in the expansion is equal to the sum of the product of each pair of distinct terms, or . Also, we know that where the left-hand sum can be computed from:
and the right-hand sum comes from the formula for the sum of the first perfect squares. Therefore, .
Solution 3 (Bash)
Consider the set . Denote by all size 2 subsets of this set. Replace each element of by the product of the elements. Now, the quantity we seek is the sum of each element. Since consecutive elements add to or , we can simplify this to .
Solution 4
Let set be and set be . The sum of the negative coefficients is the sum of the products of the elements in all two element sets such that one element is from and the other is from . Each summand is a term in the expansion of which equals . The sum of the positive coefficients is the sum of the products of all two element sets such that the two elements are either both in or both in . By counting, the sum is , so the sum of all coefficients is . Thus, the answer is .
See also
2004 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.