Difference between revisions of "1963 AHSME Problems/Problem 12"

(Solution to Problem 12)
 
m (Solution)
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
 
==Solution==
 
==Solution==
 
<asy>
 
<asy>
dot((-3,-2));
 
label("P",(-3,-2),NW);
 
dot((1,-5));
 
label("Q",(1,-5),NW);
 
dot((9,1));
 
label("R",(9,1),NW);
 
  
 
import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black;
 
import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black;
real xmin=-5.2,xmax=9.2,ymin=-5.2,ymax=6.2;  
+
real xmin=-4.2,xmax=10.2,ymin=-6.2,ymax=5.2;  
 
pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0);  
 
pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0);  
  
Line 28: Line 22:
 
xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true);
 
xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true);
 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
 +
dot((-3,-2));
 +
label("P",(-3,-2),NW);
 +
dot((1,-5));
 +
label("Q",(1,-5),NW);
 +
dot((9,1));
 +
label("R",(9,1),NW);
  
 
</asy>
 
</asy>
 
Graph the three points on the coordinate grid.  Noting that the opposite sides of a [[parallelogram]] are congruent and parallel, count boxes to find out that point <math>S</math> is on <math>(5,4)</math>.  The sum of the x-coordinates and y-coordinates is <math>9</math>, so the answer is <math>\boxed{\textbf{(E)}}</math>.
 
Graph the three points on the coordinate grid.  Noting that the opposite sides of a [[parallelogram]] are congruent and parallel, count boxes to find out that point <math>S</math> is on <math>(5,4)</math>.  The sum of the x-coordinates and y-coordinates is <math>9</math>, so the answer is <math>\boxed{\textbf{(E)}}</math>.
 
  
 
==See Also==
 
==See Also==

Latest revision as of 03:04, 7 June 2018

Problem

Three vertices of parallelogram $PQRS$ are $P(-3,-2), Q(1,-5), R(9,1)$ with $P$ and $R$ diagonally opposite. The sum of the coordinates of vertex $S$ is:

$\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 9$

Solution

[asy]  import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.2,xmax=10.2,ymin=-6.2,ymax=5.2;  pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0);   /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs);  Label laxis; laxis.p=fontsize(10);  xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  dot((-3,-2)); label("P",(-3,-2),NW); dot((1,-5)); label("Q",(1,-5),NW); dot((9,1)); label("R",(9,1),NW);  [/asy] Graph the three points on the coordinate grid. Noting that the opposite sides of a parallelogram are congruent and parallel, count boxes to find out that point $S$ is on $(5,4)$. The sum of the x-coordinates and y-coordinates is $9$, so the answer is $\boxed{\textbf{(E)}}$.

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png