Difference between revisions of "1963 AHSME Problems/Problem 12"
Rockmanex3 (talk | contribs) (Solution to Problem 12) |
Rockmanex3 (talk | contribs) m (→Solution) |
||
(One intermediate revision by the same user not shown) | |||
Line 12: | Line 12: | ||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; | import graph; size(7.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; | ||
− | real xmin=- | + | real xmin=-4.2,xmax=10.2,ymin=-6.2,ymax=5.2; |
pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
Line 28: | Line 22: | ||
xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | ||
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | |||
+ | dot((-3,-2)); | ||
+ | label("P",(-3,-2),NW); | ||
+ | dot((1,-5)); | ||
+ | label("Q",(1,-5),NW); | ||
+ | dot((9,1)); | ||
+ | label("R",(9,1),NW); | ||
</asy> | </asy> | ||
Graph the three points on the coordinate grid. Noting that the opposite sides of a [[parallelogram]] are congruent and parallel, count boxes to find out that point <math>S</math> is on <math>(5,4)</math>. The sum of the x-coordinates and y-coordinates is <math>9</math>, so the answer is <math>\boxed{\textbf{(E)}}</math>. | Graph the three points on the coordinate grid. Noting that the opposite sides of a [[parallelogram]] are congruent and parallel, count boxes to find out that point <math>S</math> is on <math>(5,4)</math>. The sum of the x-coordinates and y-coordinates is <math>9</math>, so the answer is <math>\boxed{\textbf{(E)}}</math>. | ||
− | |||
==See Also== | ==See Also== |
Latest revision as of 03:04, 7 June 2018
Problem
Three vertices of parallelogram are with and diagonally opposite. The sum of the coordinates of vertex is:
Solution
Graph the three points on the coordinate grid. Noting that the opposite sides of a parallelogram are congruent and parallel, count boxes to find out that point is on . The sum of the x-coordinates and y-coordinates is , so the answer is .
See Also
1963 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.