Difference between revisions of "2013 AIME I Problems/Problem 12"
Tempaccount (talk | contribs) (Adding problem section) |
Tempaccount (talk | contribs) (Remove extra problem section) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
== Problem 12 == | == Problem 12 == | ||
Let <math>\bigtriangleup PQR</math> be a triangle with <math>\angle P = 75^\circ</math> and <math>\angle Q = 60^\circ</math>. A regular hexagon <math>ABCDEF</math> with side length 1 is drawn inside <math>\triangle PQR</math> so that side <math>\overline{AB}</math> lies on <math>\overline{PQ}</math>, side <math>\overline{CD}</math> lies on <math>\overline{QR}</math>, and one of the remaining vertices lies on <math>\overline{RP}</math>. There are positive integers <math>a, b, c, </math> and <math>d</math> such that the area of <math>\triangle PQR</math> can be expressed in the form <math>\frac{a+b\sqrt{c}}{d}</math>, where <math>a</math> and <math>d</math> are relatively prime, and c is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Let <math>\bigtriangleup PQR</math> be a triangle with <math>\angle P = 75^\circ</math> and <math>\angle Q = 60^\circ</math>. A regular hexagon <math>ABCDEF</math> with side length 1 is drawn inside <math>\triangle PQR</math> so that side <math>\overline{AB}</math> lies on <math>\overline{PQ}</math>, side <math>\overline{CD}</math> lies on <math>\overline{QR}</math>, and one of the remaining vertices lies on <math>\overline{RP}</math>. There are positive integers <math>a, b, c, </math> and <math>d</math> such that the area of <math>\triangle PQR</math> can be expressed in the form <math>\frac{a+b\sqrt{c}}{d}</math>, where <math>a</math> and <math>d</math> are relatively prime, and c is not divisible by the square of any prime. Find <math>a+b+c+d</math>. |
Revision as of 15:59, 9 August 2018
Contents
[hide]Problem 12
Let be a triangle with and . A regular hexagon with side length 1 is drawn inside so that side lies on , side lies on , and one of the remaining vertices lies on . There are positive integers and such that the area of can be expressed in the form , where and are relatively prime, and c is not divisible by the square of any prime. Find .
Solution 1
First, find that . Draw . Now draw around such that is adjacent to and . The height of is , so the length of base is . Let the equation of be . Then, the equation of is . Solving the two equations gives . The area of is .
Cartesian Variation Solution
Use coordinates. Call the origin and be on the x-axis. It is easy to see that is the vertex on . After labeling coordinates (noting additionally that is an equilateral triangle), we see that the area is times times the ordinate of . Draw a perpendicular of , call it , and note that after using the trig functions for degrees.
Now, get the lines for and : and , whereupon we get the ordinate of to be , and the area is , so our answer is .
Solution 2 (Trig)
Angle chasing yields that both triangles and are -- triangles. First look at triangle . Using Law of Sines, we find:
Simplifying, we find . Since , WLOG assume triangle is equilateral, so . So .
Apply Law of Sines again,
Simplifying, we find .
.
Evaluating and reducing, we get thus the answer is
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.