Difference between revisions of "1965 AHSME Problems/Problem 19"

(boi)
 
m (added link)
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
BRo WHAT NOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
+
== Problem 19==
 +
 
 +
If <math>x^4 + 4x^3 + 6px^2 + 4qx + r</math> is exactly divisible by <math>x^3 + 3x^2 + 9x + 3</math>, the value of <math>(p + q)r</math> is:
 +
 
 +
<math>\textbf{(A)}\ - 18 \qquad
 +
\textbf{(B) }\ 12 \qquad
 +
\textbf{(C) }\ 15 \qquad
 +
\textbf{(D) }\ 27 \qquad
 +
\textbf{(E) }\ 45 \qquad  </math> 
 +
 
 +
== Solution 1 ==
 +
Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>.
 +
 
 +
Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As  <math>f(x)|g(x)</math> , 3 roots of 4 roots of <math>g(x)</math> will be same as roots of <math>f(x)</math>. Let  the 4th root of <math>g(x)</math> be <math>r_4</math>.  By [[Vieta's Formulas]]
 +
 
 +
In <math>f(x)</math>
 +
 
 +
<math>r_1+r_2+r_3=-3</math>
 +
 
 +
<math>r_1r_2+r_2r_3+r_1r_3=9</math>
 +
 
 +
<math>r_1r_2r_3=-3</math>
 +
 
 +
In <math>g(x)</math>
 +
 
 +
<math>r_1+r_2+r_3+r_4=-4</math>
 +
 
 +
<math>=>r_4=-1</math>
 +
 
 +
<math>r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4=6p</math>
 +
 
 +
<math>=>r_1r_2+r_1r_3+r_2r_3+r_4(r_1+r_2+r_3)=6p</math>
 +
 
 +
<math>=>9+(-1)(-3)=6p</math>
 +
 
 +
<math>=>p=2</math>
 +
 
 +
<math>r_1r_2r_3+r_1r_3r_4+r_1r_2r_4+r_2r_3r_4=-4q</math>
 +
 
 +
<math>=>-3+r_4(r_1r_3+r_1r_2+r_2r_3)=-4q</math>
 +
 
 +
<math>=>-3+(-1)(9)=-4q</math>
 +
 
 +
<math>=>q=3</math>
 +
 
 +
<math>r_1r_2r_3r_4=r</math>
 +
 
 +
<math>=>(-3)(-1)=r</math>
 +
 
 +
<math>=>r=3</math>
 +
 
 +
so <math>(p+q)r=\boxed{\textbf{(C) }15}</math>
 +
 
 +
By ~Ahmed_Ashhab
 +
 
 +
== Solution 2 ==
 +
 
 +
Notice that to obtain the <math>x^4</math> term one must multiply <math>x^4+4x^3+6px^2+4qx+r</math> by some linear function of the form <math>x-a</math>. Looking at the <math>x^3</math> term, it is clear that <math>a</math> must equal <math>1</math>. Therefore by multiplying <math>x^4+4x^3+6px^2+4qx+r</math> by <math>x+1</math>, the product will be <math>x^4+4x^3+12x^2+12x+3</math>. Therefore  <math>p=2</math>, <math>q=3</math>, <math>r=3</math>. Thus <math>(2+3)3=\boxed{\textbf{(C) }15}</math>
 +
 
 +
== See Also ==
 +
{{AHSME 40p box|year=1965|num-b=18|num-a=20}}
 +
{{MAA Notice}}
 +
 
 +
[[Category:Intermediate Algebra Problems]]

Latest revision as of 10:17, 29 July 2024

Problem 19

If $x^4 + 4x^3 + 6px^2 + 4qx + r$ is exactly divisible by $x^3 + 3x^2 + 9x + 3$, the value of $(p + q)r$ is:

$\textbf{(A)}\ - 18 \qquad  \textbf{(B) }\ 12 \qquad  \textbf{(C) }\ 15 \qquad  \textbf{(D) }\ 27 \qquad  \textbf{(E) }\ 45 \qquad$

Solution 1

Let $f(x)=x^3+3x^2+9x+3$ and $g(x)=x^4+4x^3+6px^2+4qx+r$.

Let 3 roots of $f(x)$ be $r_1, r_2$ and $r_3$. As $f(x)|g(x)$ , 3 roots of 4 roots of $g(x)$ will be same as roots of $f(x)$. Let the 4th root of $g(x)$ be $r_4$. By Vieta's Formulas

In $f(x)$

$r_1+r_2+r_3=-3$

$r_1r_2+r_2r_3+r_1r_3=9$

$r_1r_2r_3=-3$

In $g(x)$

$r_1+r_2+r_3+r_4=-4$

$=>r_4=-1$

$r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4=6p$

$=>r_1r_2+r_1r_3+r_2r_3+r_4(r_1+r_2+r_3)=6p$

$=>9+(-1)(-3)=6p$

$=>p=2$

$r_1r_2r_3+r_1r_3r_4+r_1r_2r_4+r_2r_3r_4=-4q$

$=>-3+r_4(r_1r_3+r_1r_2+r_2r_3)=-4q$

$=>-3+(-1)(9)=-4q$

$=>q=3$

$r_1r_2r_3r_4=r$

$=>(-3)(-1)=r$

$=>r=3$

so $(p+q)r=\boxed{\textbf{(C) }15}$

By ~Ahmed_Ashhab

Solution 2

Notice that to obtain the $x^4$ term one must multiply $x^4+4x^3+6px^2+4qx+r$ by some linear function of the form $x-a$. Looking at the $x^3$ term, it is clear that $a$ must equal $1$. Therefore by multiplying $x^4+4x^3+6px^2+4qx+r$ by $x+1$, the product will be $x^4+4x^3+12x^2+12x+3$. Therefore $p=2$, $q=3$, $r=3$. Thus $(2+3)3=\boxed{\textbf{(C) }15}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png