Difference between revisions of "2010 AMC 12B Problems/Problem 10"

(Made the solution much easier computationally.)
(Solution)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Problem 10 ==
+
{{duplicate|[[2010 AMC 12B Problems|2010 AMC 12B #10]] and [[2010 AMC 10B Problems|2010 AMC 10B #14]]}}
 +
 
 +
== Problem ==
 
The average of the numbers <math>1, 2, 3,\cdots, 98, 99,</math> and <math>x</math> is <math>100x</math>. What is <math>x</math>?
 
The average of the numbers <math>1, 2, 3,\cdots, 98, 99,</math> and <math>x</math> is <math>100x</math>. What is <math>x</math>?
  
Line 9: Line 11:
 
Using difference of squares:
 
Using difference of squares:
 
<cmath>x=\frac{99\cdot50}{101\cdot99}=\frac{50}{101}</cmath>
 
<cmath>x=\frac{99\cdot50}{101\cdot99}=\frac{50}{101}</cmath>
Thus, the answer is <math>\boxed{\text{B}}</math>.
+
Thus, the answer is <math>\boxed{\textbf{(B) }\frac{50}{101}}</math>.
 +
 
 +
==Video Solution==
 +
https://youtu.be/vYXz4wStBUU?t=413
 +
 
 +
~IceMatrix
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2010|num-b=9|num-a=11|ab=B}}
 
{{AMC12 box|year=2010|num-b=9|num-a=11|ab=B}}
 +
{{AMC10 box|year=2010|num-b=13|num-a=15|ab=B}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:06, 6 July 2023

The following problem is from both the 2010 AMC 12B #10 and 2010 AMC 10B #14, so both problems redirect to this page.

Problem

The average of the numbers $1, 2, 3,\cdots, 98, 99,$ and $x$ is $100x$. What is $x$?

$\textbf{(A)}\ \dfrac{49}{101} \qquad \textbf{(B)}\ \dfrac{50}{101} \qquad \textbf{(C)}\ \dfrac{1}{2} \qquad \textbf{(D)}\ \dfrac{51}{101} \qquad \textbf{(E)}\ \dfrac{50}{99}$

Solution

We first sum the first $99$ numbers: $\frac{99(100)}{2}=99\cdot50$. Then, we know that the sum of the series is $99\cdot50+x$. There are $100$ terms, so we can divide this sum by $100$ and set it equal to $100x$: \[\frac{99\cdot50+x}{100}=100x \Rightarrow 99\cdot50=100^2x-x\Rightarrow \frac{99\cdot50}{100^2-1}=x\] Using difference of squares: \[x=\frac{99\cdot50}{101\cdot99}=\frac{50}{101}\] Thus, the answer is $\boxed{\textbf{(B) }\frac{50}{101}}$.

Video Solution

https://youtu.be/vYXz4wStBUU?t=413

~IceMatrix

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png