Difference between revisions of "2020 AMC 12B Problems"

(Problem 22)
(Problem 7)
 
(21 intermediate revisions by 8 users not shown)
Line 3: Line 3:
 
==Problem 1==
 
==Problem 1==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
What is the value in simplest form of the following expression?<cmath>\sqrt{1} + \sqrt{1+3} + \sqrt{1+3+5} + \sqrt{1+3+5+7}</cmath>
 +
 
 +
<math>\textbf{(A) }5 \qquad \textbf{(B) }4 + \sqrt{7} + \sqrt{10} \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 4 + 3\sqrt{3} + 2\sqrt{5} + \sqrt{7}</math>
  
 
[[2020 AMC 12B Problems/Problem 1|Solution]]
 
[[2020 AMC 12B Problems/Problem 1|Solution]]
Line 9: Line 11:
 
==Problem 2==
 
==Problem 2==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
What is the value of the following expression?
 +
<cmath>\frac{100^2-7^2}{70^2-11^2} \cdot \frac{(70-11)(70+11)}{(100-7)(100+7)}</cmath><math>\textbf{(A) } 1 \qquad \textbf{(B) } \frac{9951}{9950} \qquad \textbf{(C) } \frac{4780}{4779} \qquad \textbf{(D) } \frac{108}{107} \qquad \textbf{(E) } \frac{81}{80} </math>
  
 
[[2020 AMC 12B Problems/Problem 2|Solution]]
 
[[2020 AMC 12B Problems/Problem 2|Solution]]
Line 15: Line 18:
 
==Problem 3==
 
==Problem 3==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
The ratio of <math>w</math> to <math>x</math> is <math>4 : 3</math>, the ratio of <math>y</math> to <math>z</math> is <math>3 : 2</math>, and the ratio of <math>z</math> to <math>x</math> is <math>1 : 6</math>. What is the ratio of <math>w</math> to <math>y</math>?
 +
 
 +
<math>\textbf{(A) }4:3 \qquad \textbf{(B) }3:2 \qquad \textbf{(C) } 8:3 \qquad \textbf{(D) } 4:1 \qquad \textbf{(E) } 16:3 </math>
  
 
[[2020 AMC 12B Problems/Problem 3|Solution]]
 
[[2020 AMC 12B Problems/Problem 3|Solution]]
Line 21: Line 26:
 
==Problem 4==
 
==Problem 4==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
The acute angles of a right triangle are <math>a^{\circ}</math> and <math>b^{\circ}</math>, where <math>a>b</math> and both <math>a</math> and <math>b</math> are prime numbers. What is the least possible value of <math>b</math>?
 +
 
 +
<math>\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad\textbf{(E) }11</math>
  
 
[[2020 AMC 12B Problems/Problem 4|Solution]]
 
[[2020 AMC 12B Problems/Problem 4|Solution]]
Line 27: Line 34:
 
==Problem 5==
 
==Problem 5==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Teams <math>A</math> and <math>B</math> are playing in a basketball league where each game results in a win for one team and a loss for the other team. Team <math>A</math> has won <math>\tfrac{2}{3}</math> of its games and team <math>B</math> has won <math>\tfrac{5}{8}</math> of its games. Also, team <math>B</math> has won <math>7</math> more games and lost <math>7</math> more games than team <math>A.</math> How many games has team <math>A</math> played?
 +
 
 +
<math>\textbf{(A) } 21 \qquad \textbf{(B) } 27 \qquad \textbf{(C) } 42 \qquad \textbf{(D) } 48 \qquad \textbf{(E) } 63</math>
  
 
[[2020 AMC 12B Problems/Problem 5|Solution]]
 
[[2020 AMC 12B Problems/Problem 5|Solution]]
Line 33: Line 42:
 
==Problem 6==
 
==Problem 6==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
For all integers <math>n \geq 9,</math> the value of
 +
<cmath>\frac{(n+2)!-(n+1)!}{n!}</cmath>is always which of the following?
 +
 
 +
<math>\textbf{(A) } \text{a multiple of 4} \qquad \textbf{(B) } \text{a multiple of 10} \qquad \textbf{(C) } \text{a prime number} \qquad \textbf{(D) } \text{a perfect square} \qquad \textbf{(E) } \text{a perfect cube}</math>
  
 
[[2020 AMC 12B Problems/Problem 6|Solution]]
 
[[2020 AMC 12B Problems/Problem 6|Solution]]
Line 39: Line 51:
 
==Problem 7==
 
==Problem 7==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Two nonhorizontal, non vertical lines in the <math>xy</math>-coordinate plane intersect to form a <math>45^{\circ}</math> angle. One line has slope equal to <math>6</math> times the slope of the other line. What is the greatest possible value of the product of the slopes of the two lines?
 +
 
 +
<math>\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6</math>
  
 
[[2020 AMC 12B Problems/Problem 7|Solution]]
 
[[2020 AMC 12B Problems/Problem 7|Solution]]
Line 45: Line 59:
 
==Problem 8==
 
==Problem 8==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
How many ordered pairs of integers <math>(x, y)</math> satisfy the equation<cmath>x^{2020}+y^2=2y?</cmath>
 +
<math>\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}</math>
  
 
[[2020 AMC 12B Problems/Problem 8|Solution]]
 
[[2020 AMC 12B Problems/Problem 8|Solution]]
Line 51: Line 66:
 
==Problem 9==
 
==Problem 9==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
A three-quarter sector of a circle of radius <math>4</math> inches together with its interior can be rolled up to form the lateral surface of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches?
 +
<asy>
 +
 
 +
draw(Arc((0,0), 4, 0, 270));
 +
draw((0,-4)--(0,0)--(4,0));
 +
 
 +
label("$4$", (2,0), S);
 +
 
 +
</asy>
 +
 
 +
<math>\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7</math>
  
 
[[2020 AMC 12B Problems/Problem 9|Solution]]
 
[[2020 AMC 12B Problems/Problem 9|Solution]]
Line 57: Line 82:
 
==Problem 10==
 
==Problem 10==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
In unit square <math>ABCD,</math> the inscribed circle <math>\omega</math> intersects <math>\overline{CD}</math> at <math>M,</math> and <math>\overline{AM}</math> intersects <math>\omega</math> at a point <math>P</math> different from <math>M.</math> What is <math>AP?</math>
 +
 
 +
<math>\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}</math>
  
 
[[2020 AMC 12B Problems/Problem 10|Solution]]
 
[[2020 AMC 12B Problems/Problem 10|Solution]]
Line 63: Line 90:
 
==Problem 11==
 
==Problem 11==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length <math>2</math> so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region—inside the hexagon but outside all of the semicircles?
 +
 
 +
<asy>
 +
size(140);
 +
fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4));
 +
fill(arc((2,0),1,180,0)--(2,0)--cycle,white);
 +
fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white);
 +
fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white);
 +
fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white);
 +
fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white);
 +
fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white);
 +
draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0));
 +
draw(arc((2,0),1,180,0)--(2,0)--cycle);
 +
draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle);
 +
draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle);
 +
draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle);
 +
draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle);
 +
draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle);
 +
label("$2$",(3.5,3sqrt(3)/2),NE);
 +
</asy>
 +
 
 +
<math> \textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi </math>
  
 
[[2020 AMC 12B Problems/Problem 11|Solution]]
 
[[2020 AMC 12B Problems/Problem 11|Solution]]
Line 69: Line 117:
 
==Problem 12==
 
==Problem 12==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Let <math>\overline{AB}</math> be a diameter in a circle of radius <math>5\sqrt2.</math> Let <math>\overline{CD}</math> be a chord in the circle that intersects <math>\overline{AB}</math> at a point <math>E</math> such that <math>BE=2\sqrt5</math> and <math>\angle AEC = 45^{\circ}.</math> What is <math>CE^2+DE^2?</math>
 +
 
 +
<math>\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100</math>
  
 
[[2020 AMC 12B Problems/Problem 12|Solution]]
 
[[2020 AMC 12B Problems/Problem 12|Solution]]
Line 75: Line 125:
 
==Problem 13==
 
==Problem 13==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Which of the following is the value of <math>\sqrt{\log_2{6}+\log_3{6}}?</math>
 +
 
 +
<math>\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}</math>
  
 
[[2020 AMC 12B Problems/Problem 13|Solution]]
 
[[2020 AMC 12B Problems/Problem 13|Solution]]
Line 81: Line 133:
 
==Problem 14==
 
==Problem 14==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Bela and Jenn play the following game on the closed interval <math>[0, n]</math> of the real number line, where <math>n</math> is a fixed integer greater than <math>4</math>. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval <math>[0, n]</math>. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?
 +
 
 +
<math>\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{ Bela will win if and only if }n \text{ is odd.}</math>
 +
<math>\textbf{(D)} \text{ Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.</math>
  
 
[[2020 AMC 12B Problems/Problem 14|Solution]]
 
[[2020 AMC 12B Problems/Problem 14|Solution]]
Line 87: Line 142:
 
==Problem 15==
 
==Problem 15==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
There are 10 people standing equally spaced around a circle. Each person knows exactly 3 of the other 9 people: the 2 people standing next to her or him, as well as the person directly across the circle. How many ways are there for the 10 people to split up into 5 pairs so that the members of each pair know each other?
 +
 
 +
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15</math>
  
 
[[2020 AMC 12B Problems/Problem 15|Solution]]
 
[[2020 AMC 12B Problems/Problem 15|Solution]]
Line 93: Line 150:
 
==Problem 16==
 
==Problem 16==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?
 +
 
 +
<math>\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12</math>
  
 
[[2020 AMC 12B Problems/Problem 16|Solution]]
 
[[2020 AMC 12B Problems/Problem 16|Solution]]
Line 99: Line 158:
 
==Problem 17==
 
==Problem 17==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
How many polynomials of the form <math>x^5 + ax^4 + bx^3 + cx^2 + dx + 2020</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are real numbers, have the property that whenever <math>r</math> is a root, so is <math>\frac{-1+i\sqrt{3}}{2} \cdot r</math>? (Note that <math>i=\sqrt{-1}</math>)
 +
 
 +
<math>\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } 3 \qquad \textbf{(E) } 4</math>
  
 
[[2020 AMC 12B Problems/Problem 17|Solution]]
 
[[2020 AMC 12B Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
 
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
 
 
[[2020 AMC 12B Problems/Problem 18|Solution]]
 
 
==Problem 19==
 
 
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
 
 
[[2020 AMC 12B Problems/Problem 19|Solution]]
 
 
==Problem 20==
 
 
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
 
 
[[2020 AMC 12B Problems/Problem 20|Solution]]
 
 
==Problem 21==
 
  
 
In square <math>ABCD</math>, points <math>E</math> and <math>H</math> lie on <math>\overline{AB}</math> and <math>\overline{DA}</math>, respectively, so that <math>AE=AH.</math> Points <math>F</math> and <math>G</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, and points <math>I</math> and <math>J</math> lie on <math>\overline{EH}</math> so that <math>\overline{FI} \perp \overline{EH}</math> and <math>\overline{GJ} \perp \overline{EH}</math>. See the figure below. Triangle <math>AEH</math>, quadrilateral <math>BFIE</math>, quadrilateral <math>DHJG</math>, and pentagon <math>FCGJI</math> each has area <math>1.</math> What is <math>FI^2</math>?
 
In square <math>ABCD</math>, points <math>E</math> and <math>H</math> lie on <math>\overline{AB}</math> and <math>\overline{DA}</math>, respectively, so that <math>AE=AH.</math> Points <math>F</math> and <math>G</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, and points <math>I</math> and <math>J</math> lie on <math>\overline{EH}</math> so that <math>\overline{FI} \perp \overline{EH}</math> and <math>\overline{GJ} \perp \overline{EH}</math>. See the figure below. Triangle <math>AEH</math>, quadrilateral <math>BFIE</math>, quadrilateral <math>DHJG</math>, and pentagon <math>FCGJI</math> each has area <math>1.</math> What is <math>FI^2</math>?
Line 156: Line 199:
 
dot("$I$", I, SW);
 
dot("$I$", I, SW);
 
dot("$J$", J, SW);
 
dot("$J$", J, SW);
 +
</asy>
  
</asy>
 
 
<math>\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2</math>
 
<math>\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2</math>
 +
 +
[[2020 AMC 12B Problems/Problem 18|Solution]]
 +
 +
==Problem 19==
 +
 +
Square <math>ABCD</math> in the coordinate plane has vertices at the points <math>A(1,1), B(-1,1), C(-1,-1),</math> and <math>D(1,-1).</math> Consider the following four transformations:
 +
 +
<math>\quad\bullet\qquad</math> <math>L,</math> a rotation of <math>90^{\circ}</math> counterclockwise around the origin;
 +
 +
<math>\quad\bullet\qquad</math> <math>R,</math> a rotation of <math>90^{\circ}</math> clockwise around the origin;
 +
 +
<math>\quad\bullet\qquad</math> <math>H,</math> a reflection across the <math>x</math>-axis; and
 +
 +
<math>\quad\bullet\qquad</math> <math>V,</math> a reflection across the <math>y</math>-axis.
 +
 +
Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying <math>R</math> and then <math>V</math> would send the vertex <math>A</math> at <math>(1,1)</math> to <math>(-1,-1)</math> and would send the vertex <math>B</math> at <math>(-1,1)</math> to itself. How many sequences of <math>20</math> transformations chosen from <math>\{L, R, H, V\}</math> will send all of the labeled vertices back to their original positions? (For example, <math>R, R, V, H</math> is one sequence of <math>4</math> transformations that will send the vertices back to their original positions.)
 +
 +
<math>\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\  2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}</math>
 +
 +
[[2020 AMC 12B Problems/Problem 19|Solution]]
 +
 +
==Problem 20==
 +
 +
Two different cubes of the same size are to be painted, with the color of each face being chosen independently and at random to be either black or white. What is the probability that after they are painted, the cubes can be rotated to be identical in appearance?
 +
 +
<math>\textbf{(A)}\ \frac{9}{64} \qquad\textbf{(B)}\ \frac{289}{2048} \qquad\textbf{(C)}\  \frac{73}{512} \qquad\textbf{(D)}\ \frac{147}{1024} \qquad\textbf{(E)}\ \frac{589}{4096}</math>
 +
 +
[[2020 AMC 12B Problems/Problem 20|Solution]]
 +
 +
==Problem 21==
 +
 +
How many positive integers <math>n</math> satisfy<cmath>\frac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?</cmath>(Recall that <math>\lfloor x\rfloor</math> is the greatest integer not exceeding <math>x</math>.)
 +
 +
<math>\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32</math>
  
 
[[2020 AMC 12B Problems/Problem 21|Solution]]
 
[[2020 AMC 12B Problems/Problem 21|Solution]]
Line 164: Line 241:
 
==Problem 22==
 
==Problem 22==
  
What is the remainder when <math>2^{202} +202</math> is divided by <math>2^{101}+2^{51}+1</math>?
+
What is the maximum value of <math>\frac{(2^t-3t)t}{4^t}</math> for real values of <math>t?</math>
  
<math>\textbf{(A) } 100 \qquad\textbf{(B) } 101 \qquad\textbf{(C) } 200 \qquad\textbf{(D) } 201 \qquad\textbf{(E) } 202</math>
+
<math>\textbf{(A)}\ \frac{1}{16} \qquad\textbf{(B)}\ \frac{1}{15} \qquad\textbf{(C)}\ \frac{1}{12} \qquad\textbf{(D)}\ \frac{1}{10} \qquad\textbf{(E)}\ \frac{1}{9}</math>
  
 
[[2020 AMC 12B Problems/Problem 22|Solution]]
 
[[2020 AMC 12B Problems/Problem 22|Solution]]
Line 172: Line 249:
 
==Problem 23==
 
==Problem 23==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
How many integers <math>n \geq 2</math> are there such that whenever <math>z_1, z_2, ..., z_n</math> are complex numbers such that
 +
 
 +
<cmath>|z_1| = |z_2| = ... = |z_n| = 1 \text{    and    } z_1 + z_2 + ... + z_n = 0,</cmath>
 +
then the numbers <math>z_1, z_2, ..., z_n</math> are equally spaced on the unit circle in the complex plane?
 +
 
 +
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5</math>
  
 
[[2020 AMC 12B Problems/Problem 23|Solution]]
 
[[2020 AMC 12B Problems/Problem 23|Solution]]
Line 178: Line 260:
 
==Problem 24==
 
==Problem 24==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
Let <math>D(n)</math> denote the number of ways of writing the positive integer <math>n</math> as a product<cmath>n = f_1\cdot f_2\cdots f_k,</cmath>where <math>k\ge1</math>, the <math>f_i</math> are integers strictly greater than <math>1</math>, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number <math>6</math> can be written as <math>6</math>, <math>2\cdot 3</math>, and <math>3\cdot2</math>, so <math>D(6) = 3</math>. What is <math>D(96)</math>?
 +
 
 +
<math>\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184</math>
  
 
[[2020 AMC 12B Problems/Problem 24|Solution]]
 
[[2020 AMC 12B Problems/Problem 24|Solution]]
Line 184: Line 268:
 
==Problem 25==
 
==Problem 25==
  
These problems will not be available until the 2020 AMC 12B contest is released on Wednesday, February 5, 2020.
+
For each real number <math>a</math> with <math>0 \leq a \leq 1</math>, let numbers <math>x</math> and <math>y</math> be chosen independently at random from the intervals <math>[0, a]</math> and <math>[0, 1]</math>, respectively, and let <math>P(a)</math> be the probability that
 +
 
 +
<cmath>\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1</cmath>
 +
What is the maximum value of <math>P(a)?</math>
 +
 
 +
<math>\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}</math>
  
 
[[2020 AMC 12B Problems/Problem 25|Solution]]
 
[[2020 AMC 12B Problems/Problem 25|Solution]]

Latest revision as of 11:08, 12 September 2024

2020 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value in simplest form of the following expression?\[\sqrt{1} + \sqrt{1+3} + \sqrt{1+3+5} + \sqrt{1+3+5+7}\]

$\textbf{(A) }5 \qquad \textbf{(B) }4 + \sqrt{7} + \sqrt{10} \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 4 + 3\sqrt{3} + 2\sqrt{5} + \sqrt{7}$

Solution

Problem 2

What is the value of the following expression? \[\frac{100^2-7^2}{70^2-11^2} \cdot \frac{(70-11)(70+11)}{(100-7)(100+7)}\]$\textbf{(A) } 1 \qquad \textbf{(B) } \frac{9951}{9950} \qquad \textbf{(C) } \frac{4780}{4779} \qquad \textbf{(D) } \frac{108}{107} \qquad \textbf{(E) } \frac{81}{80}$

Solution

Problem 3

The ratio of $w$ to $x$ is $4 : 3$, the ratio of $y$ to $z$ is $3 : 2$, and the ratio of $z$ to $x$ is $1 : 6$. What is the ratio of $w$ to $y$?

$\textbf{(A) }4:3 \qquad \textbf{(B) }3:2 \qquad \textbf{(C) } 8:3 \qquad \textbf{(D) } 4:1 \qquad \textbf{(E) } 16:3$

Solution

Problem 4

The acute angles of a right triangle are $a^{\circ}$ and $b^{\circ}$, where $a>b$ and both $a$ and $b$ are prime numbers. What is the least possible value of $b$?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad\textbf{(E) }11$

Solution

Problem 5

Teams $A$ and $B$ are playing in a basketball league where each game results in a win for one team and a loss for the other team. Team $A$ has won $\tfrac{2}{3}$ of its games and team $B$ has won $\tfrac{5}{8}$ of its games. Also, team $B$ has won $7$ more games and lost $7$ more games than team $A.$ How many games has team $A$ played?

$\textbf{(A) } 21 \qquad \textbf{(B) } 27 \qquad \textbf{(C) } 42 \qquad \textbf{(D) } 48 \qquad \textbf{(E) } 63$

Solution

Problem 6

For all integers $n \geq 9,$ the value of \[\frac{(n+2)!-(n+1)!}{n!}\]is always which of the following?

$\textbf{(A) } \text{a multiple of 4} \qquad \textbf{(B) } \text{a multiple of 10} \qquad \textbf{(C) } \text{a prime number} \qquad \textbf{(D) } \text{a perfect square} \qquad \textbf{(E) } \text{a perfect cube}$

Solution

Problem 7

Two nonhorizontal, non vertical lines in the $xy$-coordinate plane intersect to form a $45^{\circ}$ angle. One line has slope equal to $6$ times the slope of the other line. What is the greatest possible value of the product of the slopes of the two lines?

$\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6$

Solution

Problem 8

How many ordered pairs of integers $(x, y)$ satisfy the equation\[x^{2020}+y^2=2y?\] $\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}$

Solution

Problem 9

A three-quarter sector of a circle of radius $4$ inches together with its interior can be rolled up to form the lateral surface of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches? [asy]  draw(Arc((0,0), 4, 0, 270)); draw((0,-4)--(0,0)--(4,0));  label("$4$", (2,0), S);  [/asy]

$\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7$

Solution

Problem 10

In unit square $ABCD,$ the inscribed circle $\omega$ intersects $\overline{CD}$ at $M,$ and $\overline{AM}$ intersects $\omega$ at a point $P$ different from $M.$ What is $AP?$

$\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}$

Solution

Problem 11

As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length $2$ so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region—inside the hexagon but outside all of the semicircles?

[asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE); [/asy]

$\textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi$

Solution

Problem 12

Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$

$\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100$

Solution

Problem 13

Which of the following is the value of $\sqrt{\log_2{6}+\log_3{6}}?$

$\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}$

Solution

Problem 14

Bela and Jenn play the following game on the closed interval $[0, n]$ of the real number line, where $n$ is a fixed integer greater than $4$. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval $[0, n]$. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?

$\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{ Bela will win if and only if }n \text{ is odd.}$ $\textbf{(D)} \text{ Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.$

Solution

Problem 15

There are 10 people standing equally spaced around a circle. Each person knows exactly 3 of the other 9 people: the 2 people standing next to her or him, as well as the person directly across the circle. How many ways are there for the 10 people to split up into 5 pairs so that the members of each pair know each other?

$\textbf{(A) } 11 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$

Solution

Problem 16

An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?

$\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12$

Solution

Problem 17

How many polynomials of the form $x^5 + ax^4 + bx^3 + cx^2 + dx + 2020$, where $a$, $b$, $c$, and $d$ are real numbers, have the property that whenever $r$ is a root, so is $\frac{-1+i\sqrt{3}}{2} \cdot r$? (Note that $i=\sqrt{-1}$)

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } 3 \qquad \textbf{(E) } 4$

Solution

Problem 18

In square $ABCD$, points $E$ and $H$ lie on $\overline{AB}$ and $\overline{DA}$, respectively, so that $AE=AH.$ Points $F$ and $G$ lie on $\overline{BC}$ and $\overline{CD}$, respectively, and points $I$ and $J$ lie on $\overline{EH}$ so that $\overline{FI} \perp \overline{EH}$ and $\overline{GJ} \perp \overline{EH}$. See the figure below. Triangle $AEH$, quadrilateral $BFIE$, quadrilateral $DHJG$, and pentagon $FCGJI$ each has area $1.$ What is $FI^2$? [asy] real x=2sqrt(2); real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); real z=2sqrt(8-4sqrt(2)); pair A, B, C, D, E, F, G, H, I, J; A = (0,0); B = (4,0); C = (4,4); D = (0,4); E = (x,0); F = (4,y); G = (y,4); H = (0,x); I = F + z * dir(225); J = G + z * dir(225);  draw(A--B--C--D--A); draw(H--E); draw(J--G^^F--I); draw(rightanglemark(G, J, I), linewidth(.5)); draw(rightanglemark(F, I, E), linewidth(.5));  dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$E$", E, S); dot("$F$", F, dir(0)); dot("$G$", G, N); dot("$H$", H, W); dot("$I$", I, SW); dot("$J$", J, SW); [/asy]

$\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2$

Solution

Problem 19

Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations:

$\quad\bullet\qquad$ $L,$ a rotation of $90^{\circ}$ counterclockwise around the origin;

$\quad\bullet\qquad$ $R,$ a rotation of $90^{\circ}$ clockwise around the origin;

$\quad\bullet\qquad$ $H,$ a reflection across the $x$-axis; and

$\quad\bullet\qquad$ $V,$ a reflection across the $y$-axis.

Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.)

$\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\  2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$

Solution

Problem 20

Two different cubes of the same size are to be painted, with the color of each face being chosen independently and at random to be either black or white. What is the probability that after they are painted, the cubes can be rotated to be identical in appearance?

$\textbf{(A)}\ \frac{9}{64} \qquad\textbf{(B)}\ \frac{289}{2048} \qquad\textbf{(C)}\  \frac{73}{512} \qquad\textbf{(D)}\ \frac{147}{1024} \qquad\textbf{(E)}\ \frac{589}{4096}$

Solution

Problem 21

How many positive integers $n$ satisfy\[\frac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?\](Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$

Solution

Problem 22

What is the maximum value of $\frac{(2^t-3t)t}{4^t}$ for real values of $t?$

$\textbf{(A)}\ \frac{1}{16} \qquad\textbf{(B)}\ \frac{1}{15} \qquad\textbf{(C)}\ \frac{1}{12} \qquad\textbf{(D)}\ \frac{1}{10} \qquad\textbf{(E)}\ \frac{1}{9}$

Solution

Problem 23

How many integers $n \geq 2$ are there such that whenever $z_1, z_2, ..., z_n$ are complex numbers such that

\[|z_1| = |z_2| = ... = |z_n| = 1 \text{    and    } z_1 + z_2 + ... + z_n = 0,\] then the numbers $z_1, z_2, ..., z_n$ are equally spaced on the unit circle in the complex plane?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5$

Solution

Problem 24

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product\[n = f_1\cdot f_2\cdots f_k,\]where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$?

$\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

Solution

Problem 25

For each real number $a$ with $0 \leq a \leq 1$, let numbers $x$ and $y$ be chosen independently at random from the intervals $[0, a]$ and $[0, 1]$, respectively, and let $P(a)$ be the probability that

\[\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1\] What is the maximum value of $P(a)?$

$\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}$

Solution

See also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2020 AMC 12A Problems
Followed by
2021 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png