Difference between revisions of "2004 AMC 12B Problems/Problem 13"

(Solution)
(Problem)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
If <math>f(x) = ax+b</math> and <math>f^{-1}(x) = bx+a</math> with <math>a</math> and <math>b</math> real, what is the value of <math>a+b</math>?
+
If <math>f(c)=\frac{3}{2c-3}</math>, find <math>\frac{kn^2}{lm}</math> when <math>f^{-1}(c)\times c \times f(c)</math> equals the simplified fraction<math>\frac{kc+l}{mc+n}</math>, where <math>k,l,m,\text{ and }n</math> are integers.
  
<math>\mathrm{(A)}\ -2
+
== Solution (Alcumus)==
\qquad\mathrm{(B)}\ -1
 
\qquad\mathrm{(C)}\ 0
 
\qquad\mathrm{(D)}\ 1
 
\qquad\mathrm{(E)}\ 2</math>
 
== Solution ==
 
 
Since <math>f(f^{-1}(x))=x</math>, it follows that <math>a(bx+a)+b=x</math>, which implies <math>abx + a^2 +b = x</math>. This equation holds for all values of <math>x</math> only if <math>ab=1</math> and <math>a^2+b=0</math>.
 
Since <math>f(f^{-1}(x))=x</math>, it follows that <math>a(bx+a)+b=x</math>, which implies <math>abx + a^2 +b = x</math>. This equation holds for all values of <math>x</math> only if <math>ab=1</math> and <math>a^2+b=0</math>.
  

Latest revision as of 19:09, 13 October 2024

Problem

If $f(c)=\frac{3}{2c-3}$, find $\frac{kn^2}{lm}$ when $f^{-1}(c)\times c \times f(c)$ equals the simplified fraction$\frac{kc+l}{mc+n}$, where $k,l,m,\text{ and }n$ are integers.

Solution (Alcumus)

Since $f(f^{-1}(x))=x$, it follows that $a(bx+a)+b=x$, which implies $abx + a^2 +b = x$. This equation holds for all values of $x$ only if $ab=1$ and $a^2+b=0$.

Then $b = -a^2$. Substituting into the equation $ab = 1$, we get $-a^3 = 1$. Then $a = -1$, so $b = -1$, and\[f(x)=-x-1.\]Likewise\[f^{-1}(x)=-x-1.\]These are inverses to one another since\[f(f^{-1}(x))=-(-x-1)-1=x+1-1=x.\]\[f^{-1}(f(x))=-(-x-1)-1=x+1-1=x.\]Therefore $a+b=\boxed{-2}$.

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png