Difference between revisions of "2009 AIME II Problems/Problem 5"

 
Line 41: Line 41:
  
 
==Video Solution==
 
==Video Solution==
https://www.youtube.com/watch?v=KKVxQV4hszo&t=7s
+
https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh
  
 
== See Also ==
 
== See Also ==

Latest revision as of 12:36, 11 December 2024

Problem 5

Equilateral triangle $T$ is inscribed in circle $A$, which has radius $10$. Circle $B$ with radius $3$ is internally tangent to circle $A$ at one vertex of $T$. Circles $C$ and $D$, both with radius $2$, are internally tangent to circle $A$ at the other two vertices of $T$. Circles $B$, $C$, and $D$ are all externally tangent to circle $E$, which has radius $\dfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)); dotfactor=4;  pair A=(0,0), D=8*dir(330), C=8*dir(210), B=7*dir(90); pair Ep=(0,4-27/5); pair[] dotted={A,B,C,D,Ep};  draw(Circle(A,10)); draw(Circle(B,3)); draw(Circle(C,2)); draw(Circle(D,2)); draw(Circle(Ep,27/5));  dot(dotted); label("$E$",Ep,E); label("$A$",A,W); label("$B$",B,W); label("$C$",C,W); label("$D$",D,E); [/asy]


Solution

Let $X$ be the intersection of the circles with centers $B$ and $E$, and $Y$ be the intersection of the circles with centers $C$ and $E$. Since the radius of $B$ is $3$, $AX =4$. Assume $AE$ = $p$. Then $EX$ and $EY$ are radii of circle $E$ and have length $4+p$. $AC = 8$, and angle $CAE = 60$ degrees because we are given that triangle $T$ is equilateral. Using the Law of Cosines on triangle $CAE$, we obtain

$(6+p)^2 =p^2 + 64 - 2(8)(p) \cos 60$.

The $2$ and the $\cos 60$ terms cancel out:

$p^2 + 12p +36 = p^2 + 64 - 8p$

$12p+ 36 = 64 - 8p$

$p =\frac {28}{20} = \frac {7}{5}$. The radius of circle $E$ is $4 + \frac {7}{5} = \frac {27}{5}$, so the answer is $27 + 5 = \boxed{032}$.

Video Solution

https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png