Difference between revisions of "2020 AMC 12B Problems/Problem 13"

(Solution 5 (Guesstimation))
(Solution 2 (Change of Base Formula))
 
(29 intermediate revisions by 7 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}</math>
 
<math>\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}</math>
  
==Solution 1 (Observations)==
+
== Solution 1 (Properties of Logarithms) ==
Using the knowledge of the powers of <math>2</math> and <math>3,</math> we know that <math>\log_2{6}>2.5</math> and <math>\log_3{6}>1.5.</math> Therefore, <cmath>\sqrt{\log_2{6}+\log_3{6}}>\sqrt{2.5+1.5}=2.</cmath> Only choices <math>\textbf{(D)}</math> and <math>\textbf{(E)}</math> are greater than <math>2,</math> but <math>\textbf{(E)}</math> is certainly incorrect--if we compare the squares of the original expression and <math>\textbf{(E)},</math> then they are clearly not equal. So, the answer is <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.</math>
+
Recall that:
 
 
~Baolan
 
 
 
~Solasky (first edit on wiki!)
 
 
 
~chrisdiamond10
 
 
 
~MRENTHUSIASM (reformatted and merged the thoughts of all contributors)
 
 
 
== Solution 2 (Properties of Logarithms: Direct) ==
 
Note that:
 
 
<ol style="margin-left: 1.5em;">
 
<ol style="margin-left: 1.5em;">
 
   <li><math>\log_b{(uv)}=\log_b u + \log_b v.</math></li><p>
 
   <li><math>\log_b{(uv)}=\log_b u + \log_b v.</math></li><p>
Line 28: Line 17:
 
&=\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.
 
&=\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
~MRENTHUSIASM
+
~MRENTHUSIASM (Solution)
 
 
== Solution 3 (Properties of Logarithms: Stepwise) ==
 
<math>\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\log_2{2}+\log_2{3}+\log_3{2}+\log_3{3}}=\sqrt{2+\log_2{3}+\log_3{2}}</math>. If we call <math>\log_2{3} = x</math>, then we have
 
  
<math>\sqrt{2+x+\frac{1}{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{\log_2{3}}+\frac{1}{\sqrt{\log_2{3}}}=\sqrt{\log_2{3}}+\sqrt{\log_3{2}}</math>. So our answer is <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}</math>.
+
~JHawk0224 (Proposal)
  
~JHawk0224
+
== Solution 2 (Change of Base Formula)==
 
 
== Solution 4 (Change of Base Formula)==
 
 
First,
 
First,
 
<cmath>\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\frac{\log{6}}{\log{2}} + \frac{\log{6}}{\log{3}}} = \sqrt{\frac{\log{6}\cdot\log{3} + \log{6}\cdot\log{2}}{\log{3}\cdot\log{2}}} = \sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}.</cmath>
 
<cmath>\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\frac{\log{6}}{\log{2}} + \frac{\log{6}}{\log{3}}} = \sqrt{\frac{\log{6}\cdot\log{3} + \log{6}\cdot\log{2}}{\log{3}\cdot\log{2}}} = \sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}.</cmath>
 
From here,  
 
From here,  
<cmath>\sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2 + \log 3)(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}}.</cmath>
+
<cmath>\begin{align*}\sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}
Finally,
+
&= \sqrt{\frac{(\log 2 + \log 3)(\log 2 + \log 3)}{\log 2\cdot \log 3}}
<cmath>\begin{align*}
+
&= \sqrt{\frac{(\log 2 + \log 3)^2}{\log 2\cdot \log 3}}
\sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}} &= \sqrt{\frac{(\log2 + \log3)^2}{\log 2\cdot\log 3}} \\
 
 
&= \frac{\log 2}{\sqrt{\log 2\cdot\log 3}} + \frac{\log 3}{\sqrt{\log 2\cdot\log 3}} \\
 
&= \frac{\log 2}{\sqrt{\log 2\cdot\log 3}} + \frac{\log 3}{\sqrt{\log 2\cdot\log 3}} \\
 
&= \sqrt{\frac{\log 2}{\log 3}} + \sqrt{\frac{\log 3}{\log 2}} \\
 
&= \sqrt{\frac{\log 2}{\log 3}} + \sqrt{\frac{\log 3}{\log 2}} \\
Line 51: Line 34:
 
Answer: <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}</math>
 
Answer: <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}</math>
  
Note that in this solution, even the most minor steps have been written out. In the actual test, this solution would be quite fast, and much of it could easily be done in your head.
+
Note that in this solution, even the most minor steps have been written out. On the actual test, this solution would be quite fast, and much of it could easily be done in your head.
  
 
~ TheBeast5520
 
~ TheBeast5520
  
== Solution 5 (Solution 1 but more detailed)==
+
~ LeonidasTheConquerer (removed unnecessary steps)
 +
 
 +
==Solution 3 (Observations)==
 +
Using the knowledge of the powers of <math>2</math> and <math>3,</math> we know that <math>\log_2{6}>2.5</math> and <math>\log_3{6}>1.5.</math> Therefore, <cmath>\sqrt{\log_2{6}+\log_3{6}}>\sqrt{2.5+1.5}=2.</cmath> Only choices <math>\textbf{(D)}</math> and <math>\textbf{(E)}</math> are greater than <math>2,</math> but <math>\textbf{(E)}</math> is certainly incorrect: If we compare the squares of the original expression and <math>\textbf{(E)},</math> then they are clearly not equal. So, the answer is <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.</math>
 +
 
 +
~Baolan
 +
 
 +
~Solasky (first edit on wiki!)
 +
 
 +
~chrisdiamond10
 +
 
 +
~MRENTHUSIASM (reformatted and merged the thoughts of all contributors)
 +
 
 +
== Solution 4 (Solution 3 but More Detailed)==
 
Note: Only use this method if all else fails and you cannot find a way to simplify the logarithms.
 
Note: Only use this method if all else fails and you cannot find a way to simplify the logarithms.
  
We can see that <math>\log_2{6}</math> is greater than <math>2</math> and less than <math>3</math>. Additionally, since <math>6</math> is halfway between <math>2^2</math> and <math>2^3</math>, knowing how exponents increase more the larger <math>x</math> is, we can deduce that <math>\log_2{6}</math> is just above halfway between <math>2</math> and <math>3</math>. We can guesstimate this as <math>\log_2{6} \approx 2.55.</math> (It's actually about <math>2.585.</math>)
+
We can see that <math>\log_2{6}</math> is greater than <math>2</math> and less than <math>3.</math> Additionally, since <math>6</math> is halfway between <math>2^2</math> and <math>2^3,</math> knowing how exponents increase more the larger <math>x</math> is, we can deduce that <math>\log_2{6}</math> is just above halfway between <math>2</math> and <math>3.</math> We can guesstimate this as <math>\log_2{6} \approx 2.55.</math> (It's actually about <math>2.585.</math>)
 +
 
 +
Next, we think of <math>\log_3{6}.</math> This is greater than <math>1</math> and less than <math>2.</math> As <math>6</math> is halfway between <math>3^1</math> and <math>3^2,</math> and similar to the logic for <math>\log_2{6},</math> we know that <math>\log_3{6}</math> is just above halfway between <math>1</math> and <math>2.</math> We guesstimate this as <math>\log_3{6} \approx 1.55.</math> (It's actually about <math>1.631.</math>)
 +
 
 +
So, <math>\log_2{6} + \log_3{6}</math> is approximately <math>4.1.</math> The square root of that is just above <math>2,</math> maybe <math>2.02.</math> We cross out all choices below <math>\textbf{(C)}</math> since they are less than <math>2,</math> and <math>\textbf{(E)}</math> can't possibly be true unless either <math>\log_2{6}</math> and/or <math>\log_3{6}</math> is <math>0</math> (You can prove this by squaring.). Thus, the only feasible answer is <math>\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.</math>
 +
 
 +
~PureSwag
 +
 
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/ObLQiTVxLco
 +
 
 +
~Education, the Study of Everything
  
Next, we think of <math>\log_3{6}.</math> This is greater than <math>1</math> and less than <math>2</math>. <math>6</math> is halfway between <math>3^1</math> and <math>3^2,</math> and similar to the logic for <math>\log_2{6},</math> we know that <math>\log_3{6}</math> is just above halfway between <math>1</math> and <math>2</math>. We guesstimate this as <math>\log_3{6} \approx 1.55.</math> (It's actually about <math>1.631.</math>)
+
(This solution is wrong as it involves an identity that is not true ~pengf)
  
So <math>\log_2{6} + \log_3{6}</math> is approximately <math>4.1.</math> The square root of that is just above <math>2,</math> maybe <math>2.02.</math> We cross out all choices below <math>C</math> since they are less than <math>2</math>, and <math>E</math> can't possibly be true unless either <math>\log_2{6}</math> and/or <math>\log_3{6}</math> is <math>0</math> (you can prove this by squaring). Thus, the only feasible answer is $\text{(D).}
+
==Video Solution by TheBeautyOfMath==
  
== Video Solution ==
 
 
https://youtu.be/0xgTR3UEqbQ
 
https://youtu.be/0xgTR3UEqbQ
  
~IceMatrix
+
==Video Solution by Sohil Rathi==
  
== Video Solution ==
 
 
https://youtu.be/RdIIEhsbZKw?t=1463
 
https://youtu.be/RdIIEhsbZKw?t=1463
  
~ pi_is_3.14
 
 
== Video Solution (Meta-Solving Technique) ==
 
 
https://youtu.be/GmUWIXXf_uk?t=1298
 
https://youtu.be/GmUWIXXf_uk?t=1298
 
~ pi_is_3.14
 
  
 
==See Also==
 
==See Also==

Latest revision as of 15:40, 22 April 2024

Problem

Which of the following is the value of $\sqrt{\log_2{6}+\log_3{6}}?$

$\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}$

Solution 1 (Properties of Logarithms)

Recall that:

  1. $\log_b{(uv)}=\log_b u + \log_b v.$
  2. $\log_b u\cdot\log_u b=1.$

We use these properties of logarithms to rewrite the original expression: \begin{align*} \sqrt{\log_2{6}+\log_3{6}}&=\sqrt{(\log_2{2}+\log_2{3})+(\log_3{2}+\log_3{3})} \\ &=\sqrt{2+\log_2{3}+\log_3{2}} \\ &=\sqrt{\left(\sqrt{\log_2{3}}+\sqrt{\log_3{2}}\right)^2} \\ &=\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}. \end{align*} ~MRENTHUSIASM (Solution)

~JHawk0224 (Proposal)

Solution 2 (Change of Base Formula)

First, \[\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\frac{\log{6}}{\log{2}} + \frac{\log{6}}{\log{3}}} = \sqrt{\frac{\log{6}\cdot\log{3} + \log{6}\cdot\log{2}}{\log{3}\cdot\log{2}}} = \sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}.\] From here, \begin{align*}\sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}} &= \sqrt{\frac{(\log 2 + \log 3)(\log 2 + \log 3)}{\log 2\cdot \log 3}} &= \sqrt{\frac{(\log 2 + \log 3)^2}{\log 2\cdot \log 3}} &= \frac{\log 2}{\sqrt{\log 2\cdot\log 3}} + \frac{\log 3}{\sqrt{\log 2\cdot\log 3}} \\ &= \sqrt{\frac{\log 2}{\log 3}} + \sqrt{\frac{\log 3}{\log 2}} \\ &= \sqrt{\log_3 2} + \sqrt{\log_2 3}. \end{align*} Answer: $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}$

Note that in this solution, even the most minor steps have been written out. On the actual test, this solution would be quite fast, and much of it could easily be done in your head.

~ TheBeast5520

~ LeonidasTheConquerer (removed unnecessary steps)

Solution 3 (Observations)

Using the knowledge of the powers of $2$ and $3,$ we know that $\log_2{6}>2.5$ and $\log_3{6}>1.5.$ Therefore, \[\sqrt{\log_2{6}+\log_3{6}}>\sqrt{2.5+1.5}=2.\] Only choices $\textbf{(D)}$ and $\textbf{(E)}$ are greater than $2,$ but $\textbf{(E)}$ is certainly incorrect: If we compare the squares of the original expression and $\textbf{(E)},$ then they are clearly not equal. So, the answer is $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.$

~Baolan

~Solasky (first edit on wiki!)

~chrisdiamond10

~MRENTHUSIASM (reformatted and merged the thoughts of all contributors)

Solution 4 (Solution 3 but More Detailed)

Note: Only use this method if all else fails and you cannot find a way to simplify the logarithms.

We can see that $\log_2{6}$ is greater than $2$ and less than $3.$ Additionally, since $6$ is halfway between $2^2$ and $2^3,$ knowing how exponents increase more the larger $x$ is, we can deduce that $\log_2{6}$ is just above halfway between $2$ and $3.$ We can guesstimate this as $\log_2{6} \approx 2.55.$ (It's actually about $2.585.$)

Next, we think of $\log_3{6}.$ This is greater than $1$ and less than $2.$ As $6$ is halfway between $3^1$ and $3^2,$ and similar to the logic for $\log_2{6},$ we know that $\log_3{6}$ is just above halfway between $1$ and $2.$ We guesstimate this as $\log_3{6} \approx 1.55.$ (It's actually about $1.631.$)

So, $\log_2{6} + \log_3{6}$ is approximately $4.1.$ The square root of that is just above $2,$ maybe $2.02.$ We cross out all choices below $\textbf{(C)}$ since they are less than $2,$ and $\textbf{(E)}$ can't possibly be true unless either $\log_2{6}$ and/or $\log_3{6}$ is $0$ (You can prove this by squaring.). Thus, the only feasible answer is $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.$

~PureSwag


Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/ObLQiTVxLco

~Education, the Study of Everything

(This solution is wrong as it involves an identity that is not true ~pengf)

Video Solution by TheBeautyOfMath

https://youtu.be/0xgTR3UEqbQ

Video Solution by Sohil Rathi

https://youtu.be/RdIIEhsbZKw?t=1463

https://youtu.be/GmUWIXXf_uk?t=1298

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png