Difference between revisions of "2021 Fall AMC 12A Problems/Problem 1"

(Great alternate solution by Ehuang0531. Made some small fixes on titles. Also, complete sentences will be nice, so added "we have" up front.)
(Video Solution (Simple and Quick))
 
(42 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{duplicate|[[2021 Fall AMC 10A Problems#Problem 1|2021 Fall AMC 10A #1]] and [[2021 Fall AMC 10A Problems#Problem 1|2021 Fall AMC 12A #1]]}}
+
{{duplicate|[[2021 Fall AMC 10A Problems/Problem 1|2021 Fall AMC 10A #1]] and [[2021 Fall AMC 12A Problems/Problem 1|2021 Fall AMC 12A #1]]}}
  
 
== Problem ==
 
== Problem ==
Line 14: Line 14:
 
== Solution 2 (Difference of Squares) ==
 
== Solution 2 (Difference of Squares) ==
 
We have
 
We have
<cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{169}=\frac{(10+3)^2(10-3)^2}{169}=\frac{13^2 \cdot 7^2}{13^2}=7^2=\boxed{\textbf{(C) } 49}.</cmath>
+
<cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{13^2}=\frac{((10+3)(10-3))^2}{13^2}=\frac{(13\cdot7)^2}{13^2}=\frac{13^2 \cdot 7^2}{13^2}=7^2=\boxed{\textbf{(C) } 49}.</cmath>
~Ehuang0531
+
 
 +
==Solution 3 (Estimate)==
 +
We know that <math>2112-2021 = 91</math>. Approximate this as <math>100</math> as it is pretty close to it. Also, approximate <math>169</math> to <math>170</math>. We then have
 +
<cmath>\frac{(2112 - 2021)^2}{169} \approx \frac{100^2}{170} \approx \frac{1000}{17} \approx 58.</cmath>
 +
Now check the answer choices. The two closest answers are <math>49</math> and <math>64</math>. As the numerator is actually bigger than it should be, it should be the smaller answer, or <math>\boxed{\textbf{(C) } 49}</math>.
 +
 
 +
==Video Solution==
 +
https://youtu.be/sqjFA_CJNRc
 +
 
 +
~Charles3829
 +
 
 +
==Video Solution (Simple and Quick)==
 +
https://youtu.be/wBf2Un_4fjA
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
 +
https://youtu.be/jSvTHKTkod8
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by TheBeautyofMath==
 +
for AMC 10: https://youtu.be/o98vGHAUYjM
 +
 
 +
for AMC 12: https://youtu.be/jY-17W6dA3c
 +
 
 +
~IceMatrix
 +
 
 +
==Video Solution==
 +
https://youtu.be/3qohnl543-4
 +
 
 +
~Lucas
  
 
==See Also==
 
==See Also==

Latest revision as of 09:52, 18 September 2024

The following problem is from both the 2021 Fall AMC 10A #1 and 2021 Fall AMC 12A #1, so both problems redirect to this page.

Problem

What is the value of $\frac{(2112-2021)^2}{169}$?

$\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$

Solution 1 (Laws of Exponents)

We have \[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}.\] ~MRENTHUSIASM

Solution 2 (Difference of Squares)

We have \[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{13^2}=\frac{((10+3)(10-3))^2}{13^2}=\frac{(13\cdot7)^2}{13^2}=\frac{13^2 \cdot 7^2}{13^2}=7^2=\boxed{\textbf{(C) } 49}.\]

Solution 3 (Estimate)

We know that $2112-2021 = 91$. Approximate this as $100$ as it is pretty close to it. Also, approximate $169$ to $170$. We then have \[\frac{(2112 - 2021)^2}{169} \approx \frac{100^2}{170} \approx \frac{1000}{17} \approx 58.\] Now check the answer choices. The two closest answers are $49$ and $64$. As the numerator is actually bigger than it should be, it should be the smaller answer, or $\boxed{\textbf{(C) } 49}$.

Video Solution

https://youtu.be/sqjFA_CJNRc

~Charles3829

Video Solution (Simple and Quick)

https://youtu.be/wBf2Un_4fjA

~Education, the Study of Everything

Video Solution

https://youtu.be/jSvTHKTkod8

~savannahsolver

Video Solution by TheBeautyofMath

for AMC 10: https://youtu.be/o98vGHAUYjM

for AMC 12: https://youtu.be/jY-17W6dA3c

~IceMatrix

Video Solution

https://youtu.be/3qohnl543-4

~Lucas

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png