Difference between revisions of "2005 AMC 12A Problems/Problem 17"

(Image needed)
 
m (moved answer choices after diagram)
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
A unit [[cube]] is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex <math>W</math>?
 
A unit [[cube]] is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex <math>W</math>?
 +
 +
<asy>
 +
path a=(0,0)--(10,0)--(10,10)--(0,10)--cycle;
 +
path b = (0,10)--(6,16)--(16,16)--(16,6)--(10,0);
 +
path c= (10,10)--(16,16);
 +
path d= (0,0)--(3,13)--(13,13)--(10,0);
 +
path e= (13,13)--(16,6);
 +
draw(a,linewidth(0.7));
 +
draw(b,linewidth(0.7));
 +
draw(c,linewidth(0.7));
 +
draw(d,linewidth(0.7));
 +
draw(e,linewidth(0.7));
 +
draw(shift((20,0))*a,linewidth(0.7));
 +
draw(shift((20,0))*b,linewidth(0.7));
 +
draw(shift((20,0))*c,linewidth(0.7));
 +
draw(shift((20,0))*d,linewidth(0.7));
 +
draw(shift((20,0))*e,linewidth(0.7));
 +
draw((20,0)--(25,10)--(30,0),dashed);
 +
draw((25,10)--(31,16)--(36,6),dashed);
 +
draw((15,0)--(10,10),Arrow);
 +
draw((15.5,0)--(30,10),Arrow);
 +
label("$W$",(15.2,0),S);
 +
label("Figure 1",(5,0),S);
 +
label("Figure 2",(25,0),S);
 +
</asy>
  
 
<math>
 
<math>
 
(\mathrm {A}) \ \frac{1}{12} \qquad (\mathrm {B}) \ \frac{1}{9} \qquad (\mathrm {C})\ \frac{1}{8} \qquad (\mathrm {D}) \ \frac{1}{6} \qquad (\mathrm {E})\ \frac{1}{4}
 
(\mathrm {A}) \ \frac{1}{12} \qquad (\mathrm {B}) \ \frac{1}{9} \qquad (\mathrm {C})\ \frac{1}{8} \qquad (\mathrm {D}) \ \frac{1}{6} \qquad (\mathrm {E})\ \frac{1}{4}
 
</math>
 
</math>
 
{{image}}
 
  
 
== Solution ==
 
== Solution ==
It is a [[pyramid]], so <math>\frac{1}{3} \cdot \left(\frac{1}{4}\right) \cdot (1) = \frac {1}{12}</math>.
+
It is a [[pyramid]] with height <math>1</math> and base area <math>\frac{1}{4}</math>, so using the formula for the volume of a pyramid, <math>\frac{1}{3} \cdot \left(\frac{1}{4}\right) \cdot (1) = \frac {1}{12} \Rightarrow \boxed{(\mathrm {A})}</math>.
  
 
== See also ==
 
== See also ==
Line 15: Line 38:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
[[Category:3D Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:56, 19 January 2021

Problem

A unit cube is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex $W$?

[asy] path a=(0,0)--(10,0)--(10,10)--(0,10)--cycle; path b = (0,10)--(6,16)--(16,16)--(16,6)--(10,0); path c= (10,10)--(16,16); path d= (0,0)--(3,13)--(13,13)--(10,0); path e= (13,13)--(16,6); draw(a,linewidth(0.7)); draw(b,linewidth(0.7)); draw(c,linewidth(0.7)); draw(d,linewidth(0.7)); draw(e,linewidth(0.7)); draw(shift((20,0))*a,linewidth(0.7)); draw(shift((20,0))*b,linewidth(0.7)); draw(shift((20,0))*c,linewidth(0.7)); draw(shift((20,0))*d,linewidth(0.7)); draw(shift((20,0))*e,linewidth(0.7)); draw((20,0)--(25,10)--(30,0),dashed); draw((25,10)--(31,16)--(36,6),dashed); draw((15,0)--(10,10),Arrow); draw((15.5,0)--(30,10),Arrow); label("$W$",(15.2,0),S); label("Figure 1",(5,0),S); label("Figure 2",(25,0),S); [/asy]

$(\mathrm {A}) \ \frac{1}{12} \qquad (\mathrm {B}) \ \frac{1}{9} \qquad (\mathrm {C})\ \frac{1}{8} \qquad (\mathrm {D}) \ \frac{1}{6} \qquad (\mathrm {E})\ \frac{1}{4}$

Solution

It is a pyramid with height $1$ and base area $\frac{1}{4}$, so using the formula for the volume of a pyramid, $\frac{1}{3} \cdot \left(\frac{1}{4}\right) \cdot (1) = \frac {1}{12} \Rightarrow \boxed{(\mathrm {A})}$.

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png