Difference between revisions of "2022 AMC 8 Problems/Problem 9"

(Solution)
(Solution)
 
(13 intermediate revisions by 10 users not shown)
Line 18: Line 18:
  
 
Alternatively, we can condense the solution above into the following equation: <cmath>68+(212-68)\cdot\left(\frac12\right)^{\tfrac{15}{5}}=86.</cmath>
 
Alternatively, we can condense the solution above into the following equation: <cmath>68+(212-68)\cdot\left(\frac12\right)^{\tfrac{15}{5}}=86.</cmath>
~MRENTHUSIASM ~Mathfun1000
+
~MRENTHUSIASM ~MathFun1000
 +
 
 +
==Video Solution by Math-X (First understand the problem!!!)==
 +
https://youtu.be/oUEa7AjMF2A?si=l1o2Qg5grdDcniVg&t=1179
 +
 
 +
~Math-X
 +
 
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/U6L9QiKrEW0
 +
 
 +
~Education, the Study of Everything
 +
 
 
==Video Solution==
 
==Video Solution==
https://youtu.be/Ij9pAy6tQSg?t=627
+
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=627
  
 
~Interstigation
 
~Interstigation
 +
 +
==Video Solution==
 +
https://youtu.be/1xspUFoKDnU?t=253
 +
 +
~STEMbreezy
 +
 +
==Video Solution==
 +
https://youtu.be/XQ4nVqMrgm0
 +
 +
~savannahsolver
 +
 +
==Video Solution==
 +
https://youtu.be/0YKUSrG9G-Q
 +
 +
~harungurcan
  
 
==See Also==  
 
==See Also==  
 
{{AMC8 box|year=2022|num-b=8|num-a=10}}
 
{{AMC8 box|year=2022|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:05, 2 January 2024

Problem

A cup of boiling water ($212^{\circ}\text{F}$) is placed to cool in a room whose temperature remains constant at $68^{\circ}\text{F}$. Suppose the difference between the water temperature and the room temperature is halved every $5$ minutes. What is the water temperature, in degrees Fahrenheit, after $15$ minutes?

$\textbf{(A) } 77 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 98 \qquad \textbf{(E) } 104$

Solution

Initially, the difference between the water temperature and the room temperature is $212-68=144$ degrees Fahrenheit.

After $5$ minutes, the difference between the temperatures is $144\div2=72$ degrees Fahrenheit.

After $10$ minutes, the difference between the temperatures is $72\div2=36$ degrees Fahrenheit.

After $15$ minutes, the difference between the temperatures is $36\div2=18$ degrees Fahrenheit. At this point, the water temperature is $68+18=\boxed{\textbf{(B) } 86}$ degrees Fahrenheit.

Remark

Alternatively, we can condense the solution above into the following equation: \[68+(212-68)\cdot\left(\frac12\right)^{\tfrac{15}{5}}=86.\] ~MRENTHUSIASM ~MathFun1000

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/oUEa7AjMF2A?si=l1o2Qg5grdDcniVg&t=1179

~Math-X

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/U6L9QiKrEW0

~Education, the Study of Everything

Video Solution

https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=627

~Interstigation

Video Solution

https://youtu.be/1xspUFoKDnU?t=253

~STEMbreezy

Video Solution

https://youtu.be/XQ4nVqMrgm0

~savannahsolver

Video Solution

https://youtu.be/0YKUSrG9G-Q

~harungurcan

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png