Difference between revisions of "2022 AMC 8 Problems/Problem 14"

(Solution)
 
(5 intermediate revisions by 5 users not shown)
Line 11: Line 11:
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Video Solution by Math-X (First understand the problem!!!)==
 +
https://youtu.be/oUEa7AjMF2A?si=sMxdry7U6U_2bPZH&t=2168
 +
 +
~Math-X
 +
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/419vsFnrGeY
 +
 +
~Education, the Study of Everything
 +
 
==Video Solution==
 
==Video Solution==
 
https://youtu.be/Ij9pAy6tQSg?t=1222
 
https://youtu.be/Ij9pAy6tQSg?t=1222
  
 
~Interstigation
 
~Interstigation
 +
 +
==Video Solution==
 +
https://youtu.be/p29Fe2dLGs8?t=212
 +
 +
~STEMbreezy
 +
 +
==Video Solution==
 +
https://youtu.be/NmfnoSn3CDg
 +
 +
~savannahsolver
 +
 +
==Video Solution==
 +
https://youtu.be/c6shf8oma5c
 +
 +
~harungurcan
  
 
==See Also==  
 
==See Also==  
 
{{AMC8 box|year=2022|num-b=13|num-a=15}}
 
{{AMC8 box|year=2022|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:48, 23 November 2023

Problem

In how many ways can the letters in $\textbf{BEEKEEPER}$ be rearranged so that two or more $\textbf{E}$s do not appear together?

$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120$

Solution

All valid arrangements of the letters must be of the form \[\textbf{E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E}.\] The problem is equivalent to counting the arrangements of $\textbf{B},\textbf{K},\textbf{P},$ and $\textbf{R}$ into the four blanks, in which there are $4!=\boxed{\textbf{(D) } 24}$ ways.

~MRENTHUSIASM

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/oUEa7AjMF2A?si=sMxdry7U6U_2bPZH&t=2168

~Math-X

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/419vsFnrGeY

~Education, the Study of Everything

Video Solution

https://youtu.be/Ij9pAy6tQSg?t=1222

~Interstigation

Video Solution

https://youtu.be/p29Fe2dLGs8?t=212

~STEMbreezy

Video Solution

https://youtu.be/NmfnoSn3CDg

~savannahsolver

Video Solution

https://youtu.be/c6shf8oma5c

~harungurcan

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png