Difference between revisions of "2011 AMC 8 Problems/Problem 16"
Bellaz2014 (talk | contribs) (→Video Solution 1 by SpreadTheMathLove) |
|||
(One intermediate revision by one other user not shown) | |||
Line 43: | Line 43: | ||
==Video Solution 1== | ==Video Solution 1== | ||
https://www.youtube.com/watch?v=mYn6tNxrWBU | https://www.youtube.com/watch?v=mYn6tNxrWBU | ||
+ | |||
+ | |||
+ | ~ by ==SpreadtheMathLove== | ||
+ | |||
+ | ==Video Solution by WhyMath== | ||
+ | https://youtu.be/UjACHET8l3E | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2011|num-b=15|num-a=17}} | {{AMC8 box|year=2011|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 10:06, 18 November 2024
Contents
Problem
Let be the area of the triangle with sides of length , and . Let be the area of the triangle with sides of length and . What is the relationship between and ?
Solution 1 (Using the Pythagorean Theorem)
25-25-30
We can draw the altitude for the side with length 30. By HL Congruence, the two triangles formed are congruent. Thus the altitude splits the side with length 30 into two segments with length 15. By the Pythagorean Theorem, we have
Thus we have two 15-20-25 right triangles.
25-25-40
We can draw the altitude for the side with length 40. By HL Congruence, the two triangles formed are congruent. Thus the altitude splits the side with length 40 into two segments with length 20. From the 25-25-30 case, we know that the other side length is 15, so we have two 15-20-25 right triangles. Let the area of a 15-20-25 right triangle be .
Solution 2 (Using Heron's Formula)
Using Heron's formula, we can calculate the area of the two triangles. The formula states that where is the semiperimeter of a triangle with side lengths , , and .
For the 25-25-30 triangle, Therefore,
For the 25-25-40 triangle, Therefore,
Hence,
Video Solution 1
https://www.youtube.com/watch?v=mYn6tNxrWBU
~ by ==SpreadtheMathLove==
Video Solution by WhyMath
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.