Difference between revisions of "2004 AMC 12B Problems/Problem 19"
(problem/solution/images) |
(→Solution 2) |
||
(16 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A truncated | + | A truncated cone has horizontal bases with radii <math>18</math> and <math>2</math>. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere? |
<math>\mathrm{(A)}\ 6 | <math>\mathrm{(A)}\ 6 | ||
Line 9: | Line 9: | ||
== Solution == | == Solution == | ||
− | Consider a [[trapezoid]] | + | === Solution 1 === |
+ | Consider a [[trapezoid]] (label it <math>ABCD</math> as follows) cross-section of the truncate cone along a diameter of the bases: | ||
<center><asy> | <center><asy> | ||
import olympiad; | import olympiad; | ||
− | size( | + | size(220); |
defaultpen(0.7); | defaultpen(0.7); | ||
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; | pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; | ||
Line 31: | Line 32: | ||
<center><asy> | <center><asy> | ||
import olympiad; | import olympiad; | ||
− | size( | + | size(220); |
defaultpen(0.7); | defaultpen(0.7); | ||
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); | pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); | ||
− | pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2; | + | pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2, O=(E+G)/2; |
draw(A--B--C--D--cycle); | draw(A--B--C--D--cycle); | ||
draw(G--E--H--D); | draw(G--E--H--D); | ||
draw(circumcircle(E,F,G)); | draw(circumcircle(E,F,G)); | ||
− | dot(E); | + | dot(E);dot(F);dot(G);dot(H);dot(O); |
− | dot(F); | ||
− | dot(G); | ||
− | dot(H); | ||
label("\(A\)",A,S); | label("\(A\)",A,S); | ||
label("\(B\)",B,S); | label("\(B\)",B,S); | ||
Line 50: | Line 48: | ||
label("\(G\)",G,N); | label("\(G\)",G,N); | ||
label("\(H\)",H,S); | label("\(H\)",H,S); | ||
− | label("\(O\)", | + | label("\(O\)",O,NE); |
label("\(2\)",P,N); | label("\(2\)",P,N); | ||
label("\(12\)",Q,W); | label("\(12\)",Q,W); | ||
Line 56: | Line 54: | ||
label("\(16\)",T,S); | label("\(16\)",T,S); | ||
label("\(20\)",(A+D)/2,NW); | label("\(20\)",(A+D)/2,NW); | ||
+ | label("\(r\)",(O+E)/2,SE); | ||
</asy></center> | </asy></center> | ||
By the [[Pythagorean Theorem]], | By the [[Pythagorean Theorem]], | ||
− | <cmath>r = \frac{ | + | <cmath>r = \frac{DH}2 = \frac{\sqrt{20^2 - 16^2}}2 = 12</cmath> |
+ | Therefore, the answer is <math>\boxed{{A (6)}}.</math> | ||
+ | |||
+ | === Solution 2 === | ||
+ | |||
+ | Create a trapezoid with inscribed circle <math>O</math> exactly like in Solution #1, and extend lines <math>\overline{AD}</math> and <math>\overline{BC}</math> from the solution above and label the point at where they meet <math>H</math>. Because <math>\frac{\overline{GC}}{\overline{BE}}</math> = <math>\frac{1}{9}</math>, <math>\frac{\overline{HG}}{\overline{HE}}</math> = <math>\frac{1}{9}</math>. Let <math>\overline{HG} = x</math> and <math>\overline{GE} = 8x</math>. | ||
+ | |||
+ | Because these are radii, <math>\overline{GO} = \overline{OE} = \overline{OF} = 4x</math>. <math>\overline{OF} \perp \overline{BH} </math> so <math>\overline{OF}^2 + \overline{FH}^2 = \overline{OH}^2</math>. Plugging in, we get <math>4x^2 + \overline{FH}^2 = 5x^2</math> so <math>\overline{FH} = 3x</math>.Triangles <math>OFH</math> and <math>BEH</math> are similar so <math>\frac{\overline{OF}}{\overline{BE}} = \frac{\overline{FH}}{\overline{EH}}</math> which gives us <math>\frac{4x}{18} = \frac{3x}{9x}</math>. Solving for x, we get <cmath>x = 1.5</cmath> and <cmath>4x =6</cmath>. Thus, the answer is <math>\boxed{{A (6)}}</math>. | ||
== See also == | == See also == | ||
Line 65: | Line 71: | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:3D Geometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 18:12, 20 November 2023
Problem
A truncated cone has horizontal bases with radii and . A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?
Solution
Solution 1
Consider a trapezoid (label it as follows) cross-section of the truncate cone along a diameter of the bases:
Above, and are points of tangency. By the Two Tangent Theorem, and , so . We draw such that it is the foot of the altitude to :
By the Pythagorean Theorem, Therefore, the answer is
Solution 2
Create a trapezoid with inscribed circle exactly like in Solution #1, and extend lines and from the solution above and label the point at where they meet . Because = , = . Let and .
Because these are radii, . so . Plugging in, we get so .Triangles and are similar so which gives us . Solving for x, we get and . Thus, the answer is .
See also
2004 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.