Difference between revisions of "2018 AMC 8 Problems/Problem 22"
m (→Solution 2) |
Nolypoly11 (talk | contribs) m (→Solution 1) |
||
(One intermediate revision by one other user not shown) | |||
Line 21: | Line 21: | ||
Let us start by giving <math>D</math> the coordinate <math>(0,0)</math>, <math>A</math> the coordinate <math>(0,1)</math>, and so forth. <math>\overline{AC}</math> and <math>\overline{EB}</math> can be represented by the equations <math>y=-x+1</math> and <math>y=2x-1</math>, respectively. Solving for their intersection gives point <math>F</math> coordinates <math>\left(\frac{2}{3},\frac{1}{3}\right)</math>. | Let us start by giving <math>D</math> the coordinate <math>(0,0)</math>, <math>A</math> the coordinate <math>(0,1)</math>, and so forth. <math>\overline{AC}</math> and <math>\overline{EB}</math> can be represented by the equations <math>y=-x+1</math> and <math>y=2x-1</math>, respectively. Solving for their intersection gives point <math>F</math> coordinates <math>\left(\frac{2}{3},\frac{1}{3}\right)</math>. | ||
− | Now, <math>\triangle</math><math>EFC</math>’s area is simply <math>\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}</math> or <math>\frac{1}{12}</math>. This means that pentagon <math>ABCEF</math>’s area is <math>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}</math> of the entire square, and it follows that quadrilateral <math>AFED</math>’s area is <math>\frac{5}{12}</math> of the square. | + | Now, we can see that <math>\triangle</math><math>EFC</math>’s area is simply <math>\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}</math> or <math>\frac{1}{12}</math>. This means that pentagon <math>ABCEF</math>’s area is <math>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}</math> of the entire square, and it follows that quadrilateral <math>AFED</math>’s area is <math>\frac{5}{12}</math> of the square. |
The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B) } 108}</math>. | The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B) } 108}</math>. | ||
Line 28: | Line 28: | ||
<math>\triangle ABC</math> has half the area of the square. | <math>\triangle ABC</math> has half the area of the square. | ||
− | <math>\triangle FEC</math> has base equal to half the square side length, and by AA Similarity with <math>\triangle FBA</math>, it has <math>\frac{1}{1+2}= \frac{1}{3}</math> the height, so has <math>\dfrac1{12}</math>th area of square. Thus, the area of the quadrilateral is <math>1-1 | + | <math>\triangle FEC</math> has base equal to half the square side length, and by AA Similarity with <math>\triangle FBA</math>, it has <math>\frac{1}{1+2}= \frac{1}{3}</math> the height, so has <math>\dfrac1{12}</math>th area of square. Thus, the area of the quadrilateral is <math>1-\frac{1}{2}-\frac{1}{12}=\frac{5}{12}</math> th the area of the square. The area of the square is then <math>45\cdot\dfrac{12}{5}=\boxed{\textbf{(B) } 108}</math>. |
==Solution 3== | ==Solution 3== |
Latest revision as of 14:06, 23 December 2024
Contents
Problem 22
Point is the midpoint of side in square and meets diagonal at The area of quadrilateral is What is the area of
Solution 1
We can use analytic geometry for this problem.
Let us start by giving the coordinate , the coordinate , and so forth. and can be represented by the equations and , respectively. Solving for their intersection gives point coordinates .
Now, we can see that ’s area is simply or . This means that pentagon ’s area is of the entire square, and it follows that quadrilateral ’s area is of the square.
The area of the square is then .
Solution 2
has half the area of the square. has base equal to half the square side length, and by AA Similarity with , it has the height, so has th area of square. Thus, the area of the quadrilateral is th the area of the square. The area of the square is then .
Solution 3
Extend and to meet at . Drop an altitude from to and call it . Also, call . As stated before, we have , so the ratio of their heights is in a ratio, making the altitude from to . Note that this means that the side of the square is . In addition, by AA Similarity in a ratio. This means that the side length of the square is , making .
Now, note that . We have and Subtracting makes We are given that so Therefore, so our answer is
- moony_eyed
Solution 4
Solution with Cartesian and Barycentric Coordinates:
We start with the following:
Claim: Given a square , let be the midpoint of and let . Then .
Proof: We use Cartesian coordinates. Let be the origin, . We have that and are governed by the equations and , respectively. Solving, . The result follows.
Now, we apply Barycentric Coordinates w.r.t. . We let . Then .
In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find that Let so that . Then, we have , so the answer is .
Note: Please do not learn Barycentric Coordinates for the AMC 8.
Video Solution by OmegaLearn
https://youtu.be/FDgcLW4frg8?t=4038
- pi_is_3.14
Video Solutions
- Happytwin
~savannahsolver
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
Set s to be the bottom left triangle. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.