Difference between revisions of "1989 AHSME Problems/Problem 29"

(Problem)
(Solution)
 
(5 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math>
 
What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math>
  
{{incomplete|answers}}
+
 
 +
(A) <math>-2^{50}</math> (B) <math>-2^{49}</math> (C) 0 (D) <math>2^{49}</math> (E) <math>2^{50}</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
By the [[Binomial Theorem]], <math>(1+i)^{99}=\sum_{n=0}^{99}\binom{99}{j}i^n =</math> <math>\binom{99}{0}i^0+\binom{99}{1}i^1+\binom{99}{2}i^2+\binom{99}{3}i^3+\binom{99}{4}i^4+\cdots +\binom{99}{98}i^{98}</math>.
 +
 
 +
Using the fact that <math>i^1=i</math>, <math>i^2=-1</math>, <math>i^3=-i</math>, <math>i^4=1</math>, and <math>i^{n+4}=i^n</math>, the sum becomes:
 +
 
 +
<math>(1+i)^{99}=\binom{99}{0}+\binom{99}{1}i-\binom{99}{2}-\binom{99}{3}i+\binom{99}{4}+\cdots -\binom{99}{98}</math>.
 +
 
 +
So, <math>Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S</math>.
 +
 
 +
Using [[De Moivre's Theorem]], <math>(1+i)^{99}=[\sqrt{2}cis(45^\circ)]^{99}=\sqrt{2^{99}}\cdot cis(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot cis(135^\circ) = -2^{49}+2^{49}i</math>.
 +
 
 +
And finally, <math>S=Re[-2^{49}+2^{49}i] = -2^{49}</math>.
 +
 
 +
<math>\fbox{B}</math>
  
 
==See also==
 
==See also==
Line 11: Line 24:
  
 
[[Category:Intermediate Combinatorics Problems]]
 
[[Category:Intermediate Combinatorics Problems]]
 +
{{MAA Notice}}

Latest revision as of 18:52, 30 December 2020

Problem

What is the value of the sum $S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?$


(A) $-2^{50}$ (B) $-2^{49}$ (C) 0 (D) $2^{49}$ (E) $2^{50}$

Solution

By the Binomial Theorem, $(1+i)^{99}=\sum_{n=0}^{99}\binom{99}{j}i^n =$ $\binom{99}{0}i^0+\binom{99}{1}i^1+\binom{99}{2}i^2+\binom{99}{3}i^3+\binom{99}{4}i^4+\cdots +\binom{99}{98}i^{98}$.

Using the fact that $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, and $i^{n+4}=i^n$, the sum becomes:

$(1+i)^{99}=\binom{99}{0}+\binom{99}{1}i-\binom{99}{2}-\binom{99}{3}i+\binom{99}{4}+\cdots -\binom{99}{98}$.

So, $Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S$.

Using De Moivre's Theorem, $(1+i)^{99}=[\sqrt{2}cis(45^\circ)]^{99}=\sqrt{2^{99}}\cdot cis(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot cis(135^\circ) = -2^{49}+2^{49}i$.

And finally, $S=Re[-2^{49}+2^{49}i] = -2^{49}$.

$\fbox{B}$

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png