Difference between revisions of "2011 AMC 8 Problems/Problem 11"

(See Also)
(Video Solution 1 by SpreadTheMathLove)
 
(16 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
==Problem==
 
The graph shows the number of minutes studied by both Asha (black bar) and Sasha (grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?
 
The graph shows the number of minutes studied by both Asha (black bar) and Sasha (grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?
 +
 
<asy>
 
<asy>
 
size(300);
 
size(300);
Line 41: Line 43:
  
 
<math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12 </math>
 
<math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12 </math>
 +
 +
==Solution==
 +
Average the differences between each day. We get <math>10, -10,\text{ } 20,\text{ } 30,-20</math>. We find the average of this list to get <math>\boxed{\textbf{(A)}\ 6}</math>. ( In case you were wondering, the way to calculate the average is <math>\frac{(10+(-10)+20+30+(-20))}{5} = \frac{ 30}{5} = 6</math>. So the answer is indeed  <math>\boxed{\textbf{(A)}\ 6}</math>)
 +
 +
==Solution 2==
 +
This solution may take longer to do than the first solution. In total, Asha studied for 400 minutes a week (80 minutes per day) and Sasha studied for 430 minutes a week (86 minutes per day).  86 - 80 = 6.  Therefore, the answer is <math>\boxed{\textbf{(A)}\ 6}</math>.
 +
 +
-MiracleMaths
 +
 +
==Video Solution 1 by SpreadTheMathLove==
 +
https://www.youtube.com/watch?v=mYn6tNxrWBU
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2011|num-b=10|num-a=12}}
 
{{AMC8 box|year=2011|num-b=10|num-a=12}}
 +
{{MAA Notice}}

Latest revision as of 14:00, 17 December 2023

Problem

The graph shows the number of minutes studied by both Asha (black bar) and Sasha (grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?

[asy] size(300); real i; defaultpen(linewidth(0.8)); draw((0,140)--origin--(220,0)); for(i=1;i<13;i=i+1) { draw((0,10*i)--(220,10*i)); } label("$0$",origin,W); label("$20$",(0,20),W); label("$40$",(0,40),W); label("$60$",(0,60),W); label("$80$",(0,80),W); label("$100$",(0,100),W); label("$120$",(0,120),W); path MonD=(20,0)--(20,60)--(30,60)--(30,0)--cycle,MonL=(30,0)--(30,70)--(40,70)--(40,0)--cycle,TuesD=(60,0)--(60,90)--(70,90)--(70,0)--cycle,TuesL=(70,0)--(70,80)--(80,80)--(80,0)--cycle,WedD=(100,0)--(100,100)--(110,100)--(110,0)--cycle,WedL=(110,0)--(110,120)--(120,120)--(120,0)--cycle,ThurD=(140,0)--(140,80)--(150,80)--(150,0)--cycle,ThurL=(150,0)--(150,110)--(160,110)--(160,0)--cycle,FriD=(180,0)--(180,70)--(190,70)--(190,0)--cycle,FriL=(190,0)--(190,50)--(200,50)--(200,0)--cycle; fill(MonD,grey); fill(MonL,lightgrey); fill(TuesD,grey); fill(TuesL,lightgrey); fill(WedD,grey); fill(WedL,lightgrey); fill(ThurD,grey); fill(ThurL,lightgrey); fill(FriD,grey); fill(FriL,lightgrey); draw(MonD^^MonL^^TuesD^^TuesL^^WedD^^WedL^^ThurD^^ThurL^^FriD^^FriL); label("M",(30,-5),S); label("Tu",(70,-5),S); label("W",(110,-5),S); label("Th",(150,-5),S); label("F",(190,-5),S); label("M",(-25,85),W); label("I",(-27,75),W); label("N",(-25,65),W); label("U",(-25,55),W); label("T",(-25,45),W); label("E",(-25,35),W); label("S",(-26,25),W);[/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12$

Solution

Average the differences between each day. We get $10, -10,\text{ } 20,\text{ } 30,-20$. We find the average of this list to get $\boxed{\textbf{(A)}\ 6}$. ( In case you were wondering, the way to calculate the average is $\frac{(10+(-10)+20+30+(-20))}{5} = \frac{ 30}{5} = 6$. So the answer is indeed $\boxed{\textbf{(A)}\ 6}$)

Solution 2

This solution may take longer to do than the first solution. In total, Asha studied for 400 minutes a week (80 minutes per day) and Sasha studied for 430 minutes a week (86 minutes per day). 86 - 80 = 6. Therefore, the answer is $\boxed{\textbf{(A)}\ 6}$.

-MiracleMaths

Video Solution 1 by SpreadTheMathLove

https://www.youtube.com/watch?v=mYn6tNxrWBU

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png