Difference between revisions of "2003 AMC 12B Problems/Problem 8"

(Solution)
 
(9 intermediate revisions by 6 users not shown)
Line 1: Line 1:
Let <math>a</math> and <math>b</math> be the digits of <math>x</math>,
+
{{duplicate|[[2003 AMC 12B Problems|2003 AMC 12B #8]] and [[2003 AMC 10B Problems|2003 AMC 10B #13]]}}
 +
==Problem==
  
<cmath>\clubsuit(</cmath>\clubsuit(x)) = a + b = 3<math></math>
+
Let <math>\clubsuit(x)</math> denote the sum of the digits of the positive integer <math>x</math>. For example, <math>\clubsuit(8)=8</math> and <math>\clubsuit(123)=1+2+3=6</math>. For how many two-digit values of <math>x</math> is <math>\clubsuit(\clubsuit(x))=3</math>?
  
Clearly the only two digit numbers whose digits sum to <math>3</math> are <math>12, 21,</math> and <math>30</math>, thus the answer is <math>3 \Rightarrow \text (A)</math>
+
<math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 9 \qquad\textbf{(E) } 10 </math>
 +
 
 +
==Solution==
 +
Let <math>y=\clubsuit (x)</math>. Since <math>x \leq 99</math>, we have <math>y \leq 18</math>. Thus if <math>\clubsuit (y)=3</math>, then <math>y=3</math> or <math>y=12</math>. The 3 values of <math>x</math> for which <math>\clubsuit (x)=3</math> are 12, 21, and 30, and the 7 values of <math>x</math> for which <math>\clubsuit (x)=12</math> are 39, 48, 57, 66, 75, 84, and 93. There are <math>\boxed{E}</math> = <math>\boxed{10}</math> values in all.
 +
 
 +
~Andrew_Lu/Mismatchedcubing
 +
 
 +
==See Also==
 +
{{AMC12 box|year=2003|ab=B|num-b=7|num-a=9}}
 +
{{AMC10 box|year=2003|ab=B|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Latest revision as of 10:40, 1 August 2024

The following problem is from both the 2003 AMC 12B #8 and 2003 AMC 10B #13, so both problems redirect to this page.

Problem

Let $\clubsuit(x)$ denote the sum of the digits of the positive integer $x$. For example, $\clubsuit(8)=8$ and $\clubsuit(123)=1+2+3=6$. For how many two-digit values of $x$ is $\clubsuit(\clubsuit(x))=3$?

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 9 \qquad\textbf{(E) } 10$

Solution

Let $y=\clubsuit (x)$. Since $x \leq 99$, we have $y \leq 18$. Thus if $\clubsuit (y)=3$, then $y=3$ or $y=12$. The 3 values of $x$ for which $\clubsuit (x)=3$ are 12, 21, and 30, and the 7 values of $x$ for which $\clubsuit (x)=12$ are 39, 48, 57, 66, 75, 84, and 93. There are $\boxed{E}$ = $\boxed{10}$ values in all.

~Andrew_Lu/Mismatchedcubing

See Also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png