Difference between revisions of "2013 AIME I Problems/Problem 2"

(Solution)
 
(16 intermediate revisions by 10 users not shown)
Line 1: Line 1:
== Problem 2 ==
+
== Problem ==
 
Find the number of five-digit positive integers, <math>n</math>, that satisfy the following conditions:
 
Find the number of five-digit positive integers, <math>n</math>, that satisfy the following conditions:
  
Line 15: Line 15:
  
  
== Solution ==
+
== Solution==
 +
The number takes a form of <math>\overline{5xyz5}</math>, in which <math>5|(x+y+z)</math>. Let <math>x</math> and <math>y</math> be arbitrary digits. For each pair of <math>x,y</math>, there are exactly two values of <math>z</math> that satisfy the condition of <math>5|(x+y+z)</math>. Therefore, the answer is <math>10\times10\times2=\boxed{200}</math>
  
(solution)
+
==Video Solution==
 +
 
 +
https://www.youtube.com/watch?v=kz3ZX4PT-_0
 +
~Shreyas S
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2013|n=I|num-b=1|num-a=3}}
 
{{AIME box|year=2013|n=I|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 18:23, 27 April 2024

Problem

Find the number of five-digit positive integers, $n$, that satisfy the following conditions:

    (a) the number $n$ is divisible by $5,$
    (b) the first and last digits of $n$ are equal, and
    (c) the sum of the digits of $n$ is divisible by $5.$


Solution

The number takes a form of $\overline{5xyz5}$, in which $5|(x+y+z)$. Let $x$ and $y$ be arbitrary digits. For each pair of $x,y$, there are exactly two values of $z$ that satisfy the condition of $5|(x+y+z)$. Therefore, the answer is $10\times10\times2=\boxed{200}$

Video Solution

https://www.youtube.com/watch?v=kz3ZX4PT-_0 ~Shreyas S

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png