Difference between revisions of "2004 AMC 12B Problems/Problem 19"

(See also)
(Solution 2)
 
(13 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A truncated [[cone]] has horizontal bases with radii <math>18</math> and <math>2</math>. A [[sphere]] is tangent to the top, bottom, and lateral surface of the truncated cone. What is the [[radius]] of the sphere?  
+
A truncated cone has horizontal bases with radii <math>18</math> and <math>2</math>. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?  
  
 
<math>\mathrm{(A)}\ 6
 
<math>\mathrm{(A)}\ 6
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
Consider a [[trapezoid]]al (label it <math>ABCD</math> as follows) cross-section of the truncate cone along a diameter of the bases:
+
=== Solution 1 ===
 +
Consider a [[trapezoid]] (label it <math>ABCD</math> as follows) cross-section of the truncate cone along a diameter of the bases:
 
<center><asy>
 
<center><asy>
 
import olympiad;
 
import olympiad;
Line 31: Line 32:
 
<center><asy>
 
<center><asy>
 
import olympiad;
 
import olympiad;
size(450);
+
size(220);
 
defaultpen(0.7);
 
defaultpen(0.7);
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0);
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0);
Line 57: Line 58:
  
 
By the [[Pythagorean Theorem]],  
 
By the [[Pythagorean Theorem]],  
<cmath>r = \frac{DH}2 = \frac{\sqrt{20^2 - 16^2}}2 = \boxed{6} \Rightarrow \mathrm{(A)}.</cmath>
+
<cmath>r = \frac{DH}2 = \frac{\sqrt{20^2 - 16^2}}2 = 12</cmath>
 +
Therefore, the answer is <math>\boxed{{A (6)}}.</math>
 +
 
 +
=== Solution 2 ===
 +
 
 +
Create a trapezoid with inscribed circle <math>O</math> exactly like in Solution #1, and extend lines <math>\overline{AD}</math> and <math>\overline{BC}</math> from the solution above and label the point at where they meet <math>H</math>. Because <math>\frac{\overline{GC}}{\overline{BE}}</math> = <math>\frac{1}{9}</math>, <math>\frac{\overline{HG}}{\overline{HE}}</math> = <math>\frac{1}{9}</math>. Let <math>\overline{HG} = x</math> and <math>\overline{GE} = 8x</math>.
 +
 
 +
Because these are radii, <math>\overline{GO} = \overline{OE} = \overline{OF} = 4x</math>. <math>\overline{OF} \perp \overline{BH} </math> so <math>\overline{OF}^2 + \overline{FH}^2 = \overline{OH}^2</math>. Plugging in, we get <math>4x^2 + \overline{FH}^2 = 5x^2</math> so <math>\overline{FH} = 3x</math>.Triangles <math>OFH</math> and <math>BEH</math> are similar so <math>\frac{\overline{OF}}{\overline{BE}}  = \frac{\overline{FH}}{\overline{EH}}</math> which gives us <math>\frac{4x}{18} = \frac{3x}{9x}</math>. Solving for x, we get <cmath>x = 1.5</cmath> and <cmath>4x =6</cmath>. Thus, the answer is <math>\boxed{{A (6)}}</math>.
  
 
== See also ==
 
== See also ==
Line 64: Line 72:
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 
[[Category:3D Geometry Problems]]
 
[[Category:3D Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 18:12, 20 November 2023

Problem

A truncated cone has horizontal bases with radii $18$ and $2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?

$\mathrm{(A)}\ 6 \qquad\mathrm{(B)}\ 4\sqrt{5} \qquad\mathrm{(C)}\ 9 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 6\sqrt{3}$

Solution

Solution 1

Consider a trapezoid (label it $ABCD$ as follows) cross-section of the truncate cone along a diameter of the bases:

[asy] import olympiad; size(220); defaultpen(0.7); pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; draw(A--B--C--D--cycle); draw(circumcircle(E,F,G)); dot(E); dot(F); dot(G); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,NW); label("\(E\)",E,S); label("\(F\)",F,NE); label("\(G\)",G,N); [/asy]

Above, $E,F,$ and $G$ are points of tangency. By the Two Tangent Theorem, $BF = BE = 18$ and $CF = CG = 2$, so $BC = 20$. We draw $H$ such that it is the foot of the altitude $\overline{HD}$ to $\overline{AB}$:

[asy] import olympiad; size(220); defaultpen(0.7); pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2, O=(E+G)/2; draw(A--B--C--D--cycle); draw(G--E--H--D); draw(circumcircle(E,F,G)); dot(E);dot(F);dot(G);dot(H);dot(O); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,NW); label("\(E\)",E,S); label("\(F\)",F,NE); label("\(G\)",G,N); label("\(H\)",H,S); label("\(O\)",O,NE); label("\(2\)",P,N); label("\(12\)",Q,W); label("\(18\)",R,S); label("\(16\)",T,S); label("\(20\)",(A+D)/2,NW); label("\(r\)",(O+E)/2,SE); [/asy]

By the Pythagorean Theorem, \[r = \frac{DH}2 = \frac{\sqrt{20^2 - 16^2}}2 = 12\] Therefore, the answer is $\boxed{{A (6)}}.$

Solution 2

Create a trapezoid with inscribed circle $O$ exactly like in Solution #1, and extend lines $\overline{AD}$ and $\overline{BC}$ from the solution above and label the point at where they meet $H$. Because $\frac{\overline{GC}}{\overline{BE}}$ = $\frac{1}{9}$, $\frac{\overline{HG}}{\overline{HE}}$ = $\frac{1}{9}$. Let $\overline{HG} = x$ and $\overline{GE} = 8x$.

Because these are radii, $\overline{GO} = \overline{OE} = \overline{OF} = 4x$. $\overline{OF} \perp \overline{BH}$ so $\overline{OF}^2 + \overline{FH}^2 = \overline{OH}^2$. Plugging in, we get $4x^2 + \overline{FH}^2 = 5x^2$ so $\overline{FH} = 3x$.Triangles $OFH$ and $BEH$ are similar so $\frac{\overline{OF}}{\overline{BE}}  = \frac{\overline{FH}}{\overline{EH}}$ which gives us $\frac{4x}{18} = \frac{3x}{9x}$. Solving for x, we get \[x = 1.5\] and \[4x =6\]. Thus, the answer is $\boxed{{A (6)}}$.

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png