Difference between revisions of "2002 AMC 10B Problems/Problem 2"
(One intermediate revision by one other user not shown) | |||
Line 3: | Line 3: | ||
For the nonzero numbers a, b, and c, define | For the nonzero numbers a, b, and c, define | ||
− | <math>(a,b,c)=\frac{abc}{a+b+c}</math> | + | <math>D(a,b,c)=\frac{abc}{a+b+c}</math> |
− | Find <math>(2,4,6)</math>. | + | Find <math>D(2,4,6)</math>. |
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | <math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | ||
Line 12: | Line 12: | ||
<math>\frac{2\cdot 4\cdot 6}{2+4+6}=\frac{48}{12}=4\Longrightarrow\mathrm{ (C) \ }</math> | <math>\frac{2\cdot 4\cdot 6}{2+4+6}=\frac{48}{12}=4\Longrightarrow\mathrm{ (C) \ }</math> | ||
+ | |||
+ | ==Video Solution by Daily Dose of Math== | ||
+ | |||
+ | https://youtu.be/sfOaXKrndh0 | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
==See Also== | ==See Also== |
Latest revision as of 22:21, 24 October 2024
Problem
For the nonzero numbers a, b, and c, define
Find .
Solution
Video Solution by Daily Dose of Math
~Thesmartgreekmathdude
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.