Difference between revisions of "1970 AHSME Problems/Problem 16"

(Created page with "== Problem == If <math>F(n)</math> is a function such that <math>F(1)=F(2)=F(3)=1</math>, and such that <math>F(n+1)= \frac{F(n)\cdot F(n-1)+1}{F(n-2)}</math> for <math>n\ge 3,<...")
 
m (Unify solution header)
 
(4 intermediate revisions by 3 users not shown)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{C}</math>
+
 
 +
Plugging in <math>n=3</math> gives <math>F(4) = \frac{F(3) \cdot F(2) + 1}{F(1)} = \frac{1 \cdot 1 + 1}{1} = 2</math>.
 +
 
 +
Plugging in <math>n=4</math> gives <math>F(5) = \frac{F(4) \cdot F(3) + 1}{F(2)} = \frac{2 \cdot 1 + 1}{1} = 3</math>.
 +
 
 +
Plugging in <math>n=5</math> gives <math>F(6) = \frac{F(5) \cdot F(4) + 1}{F(3)} = \frac{3 \cdot 2 + 1}{1} = 7</math>.
 +
 
 +
Thus, the answer is <math>\fbox{C}</math>.
 +
 
 +
 
 +
==Sidenote==
 +
All the numbers in the sequence <math>F(n)</math> are integers. In fact, the function <math>F</math> satisfies <math>F(n)=4F(n-2)-F(n-4)</math>. (Prove it!).
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1970|num-b=15|num-a=17}}   
+
{{AHSME 35p box|year=1970|num-b=15|num-a=17}}   
  
 
[[Category: Introductory Algebra Problems]]
 
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 12:39, 16 July 2024

Problem

If $F(n)$ is a function such that $F(1)=F(2)=F(3)=1$, and such that $F(n+1)= \frac{F(n)\cdot F(n-1)+1}{F(n-2)}$ for $n\ge 3,$ then $F(6)=$

$\text{(A) } 2\quad \text{(B) } 3\quad \text{(C) } 7\quad \text{(D) } 11\quad \text{(E) } 26$

Solution

Plugging in $n=3$ gives $F(4) = \frac{F(3) \cdot F(2) + 1}{F(1)} = \frac{1 \cdot 1 + 1}{1} = 2$.

Plugging in $n=4$ gives $F(5) = \frac{F(4) \cdot F(3) + 1}{F(2)} = \frac{2 \cdot 1 + 1}{1} = 3$.

Plugging in $n=5$ gives $F(6) = \frac{F(5) \cdot F(4) + 1}{F(3)} = \frac{3 \cdot 2 + 1}{1} = 7$.

Thus, the answer is $\fbox{C}$.


Sidenote

All the numbers in the sequence $F(n)$ are integers. In fact, the function $F$ satisfies $F(n)=4F(n-2)-F(n-4)$. (Prove it!).

See also

1970 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png