Difference between revisions of "2002 AIME I Problems/Problem 12"
Mathgeek2006 (talk | contribs) m (→Solution) |
m (→Solution) |
(One intermediate revision by the same user not shown) | |
(No difference)
|
Latest revision as of 21:39, 21 November 2018
Problem
Let for all complex numbers , and let for all positive integers . Given that and , where and are real numbers, find .
Solution
Iterating we get:
From this, it follows that , for all . Thus
Thus .
See also
2002 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.