Difference between revisions of "2016 AMC 12B Problems/Problem 3"
(Created page with "==Problem== Let <math>x=-2016</math>. What is the value of <math>\bigg|</math> <math>||x|-x|-|x|</math> <math>\bigg|</math> <math>-x</math>? ==Solution== ==See Also== {{AMC...") |
m (→Solution 2) |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 3: | Line 3: | ||
Let <math>x=-2016</math>. What is the value of <math>\bigg|</math> <math>||x|-x|-|x|</math> <math>\bigg|</math> <math>-x</math>? | Let <math>x=-2016</math>. What is the value of <math>\bigg|</math> <math>||x|-x|-|x|</math> <math>\bigg|</math> <math>-x</math>? | ||
− | ==Solution== | + | <math>\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048</math> |
+ | |||
+ | ==Solution 1== | ||
+ | By: dragonfly | ||
+ | |||
+ | First of all, lets plug in all of the <math>x</math>'s into the equation. | ||
+ | |||
+ | <math>\bigg|</math> <math>||-2016|-(-2016)|-|-2016|</math> <math>\bigg|</math> <math>-(-2016)</math> | ||
+ | |||
+ | Then we simplify to get | ||
+ | |||
+ | <math>\bigg|</math> <math>|2016+2016|-2016</math> <math>\bigg|</math> <math>+2016</math> | ||
+ | |||
+ | which simplifies into | ||
+ | |||
+ | <math>\bigg|</math> <math>2016</math> <math>\bigg|</math> <math>+2016</math> | ||
+ | |||
+ | and finally we get <math>\boxed{\textbf{(D)}\ 4032}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Consider <math>x</math> is negative. | ||
+ | |||
+ | We replace all instances of <math>x</math> with <math>|x|</math>: | ||
+ | |||
+ | <math>\bigg|</math> <math>||x|+|x||-|x|</math> <math>\bigg|</math> <math>+|x|</math> | ||
+ | |||
+ | <math>=</math> <math>\bigg|</math> <math>|2x|-|x|</math> <math>\bigg|</math> <math>+|x|</math> | ||
+ | |||
+ | <math>=</math> <math>|x|</math> <math>+|x|</math> | ||
+ | |||
+ | <math>=|2x|</math> | ||
+ | |||
+ | <math>=4032 \implies \boxed{\textbf{(D)}}</math> | ||
+ | |||
+ | omerselim1 | ||
==See Also== | ==See Also== | ||
− | {{AMC12 box|year=2016|ab=B|num-b= | + | {{AMC12 box|year=2016|ab=B|num-b=2|num-a=4}} |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 21:20, 14 October 2020
Contents
Problem
Let . What is the value of ?
Solution 1
By: dragonfly
First of all, lets plug in all of the 's into the equation.
Then we simplify to get
which simplifies into
and finally we get
Solution 2
Consider is negative.
We replace all instances of with :
omerselim1
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 2 |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.