Difference between revisions of "2015 AMC 12B Problems/Problem 25"

(Added new solution)
(See Also)
 
(22 intermediate revisions by 8 users not shown)
Line 6: Line 6:
 
==Solution 1==
 
==Solution 1==
  
Let <math>x = e^{i \pi / 6}</math>, a <math>30^\circ</math> counterclockwise rotation centered at the origin. Notice that <math>P_k</math> on the complex plane is:
+
Let <math>x=e^{i\pi/6}</math>, a <math>30^\circ</math> counterclockwise rotation centered at the origin. Notice that <math>P_k</math> on the complex plane is:
  
<cmath>1 + 2x + 3x^2 + \cdots + (k+1)x^k</cmath>
+
<cmath>1+2x+3x^2+\cdots+(k+1)x^k</cmath>
  
We need to find the magnitude of <math>P_{2015}</math> on the complex plane. This is an arithmetic/geometric series.  
+
We need to find the magnitude of <math>P_{2015}</math> on the complex plane. This is an [[arithmetico-geometric series]].  
  
<cmath>\begin{align*} S &= 1 + 2x + 3x^2 + \cdots + 2015x^{2014} \\
+
<cmath>\begin{align*} S &=1+2x+3x^2+\cdots+2015x^{2014} \\
xS &= x + 2x^2 + 3x^3 + \cdots + 2015x^{2015} \\
+
xS &=x+2x^2+3x^3+\cdots+2015x^{2015} \\
(1-x)S &= 1 + x + x^2 + \cdots + x^{2014} - 2015x^{2015} \\
+
(1-x)S &=1+x+x^2+\cdots+x^{2014}-2015x^{2015} \\
S &= \frac{1 - x^{2015} }{(1-x)^2} - \frac{2015x^{2015}}{1-x} \end{align*} </cmath>
+
S &= \frac{1-x^{2015}}{(1-x)^2}-\frac{2015x^{2015}}{1-x} \end{align*} </cmath>
  
We want to find <math>|S|</math>. First, note that <math>x^{2015} = x^{11} = x^{-1}</math> because <math>x^{12} = 1</math>. Therefore
+
We want to find <math>|S|</math>. First, note that <math>x^{2015}=x^{11}=x^{-1}</math> because <math>x^{12}=1</math>. Therefore
  
<cmath>S = \frac{1 - \frac{1}{x}}{(1-x)^2} - \frac{2015}{x(1-x)} = -\frac{1}{x(1-x)} - \frac{2015}{x(1-x)} = -\frac{2016}{x(1-x)}.</cmath>
+
<cmath>S =\frac{1-\frac{1}{x}}{(1-x)^2}-\frac{2015}{x(1-x)}=-\frac{1}{x(1-x)}-\frac{2015}{x(1-x)}=-\frac{2016}{x(1-x)}.</cmath>
  
 
Hence, since <math>|x|=1</math>, we have <math>|S| = \frac{2016}{|1-x|}.</math>
 
Hence, since <math>|x|=1</math>, we have <math>|S| = \frac{2016}{|1-x|}.</math>
Line 25: Line 25:
 
Now we just have to find <math>|1-x|</math>. This can just be computed directly:
 
Now we just have to find <math>|1-x|</math>. This can just be computed directly:
  
<cmath>1 - x = 1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i</cmath>
+
<cmath>1-x=1-\frac{\sqrt{3}}{2}-\frac{1}{2}i</cmath>
  
<cmath>|1-x|^2 = \left(1 - \sqrt{3} + \frac{3}{4} \right) + \frac{1}{4} = 2 - \sqrt{3} = {\left( \frac{\sqrt{6}-\sqrt{2}}{2} \right)}^2</cmath>
+
<cmath>|1-x|^2=\left(1-\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=2-\sqrt{3}={\left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)}^2</cmath>
  
<cmath>|1-x| = \frac{\sqrt{6} - \sqrt{2}}{2}.</cmath>
+
<cmath>|1-x|=\frac{\sqrt{6}-\sqrt{2}}{2}</cmath>
  
Therefore <math>|S| = 2016 \cdot \frac{2}{\sqrt{6} -\sqrt{2}} = 2016 \left( \frac{\sqrt{6} + \sqrt{2}}{2} \right) = 1008 \sqrt{2} + 1008 \sqrt{6}.</math>
+
Therefore <math>|S|=2016\cdot\frac{2}{\sqrt{6}-\sqrt{2}}=2016\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)=1008\sqrt{2}+1008 \sqrt{6}</math>.
  
Thus the answer is <math>1008 + 1008 + 2 + 6 = \boxed{\textbf{(B)}\; 2024}.</math>
+
Thus the answer is <math>1008+2+1008+6=\boxed{\textbf{(B)}\; 2024}</math>.
  
 
==Solution 2==
 
==Solution 2==
Line 39: Line 39:
 
Here is an alternate solution that does not use complex numbers:
 
Here is an alternate solution that does not use complex numbers:
  
We will calculate the distance from <math>P_{2015}</math> to <math>P_0</math> using the Pythagorean theorem. Assume <math>P_0</math> lies at the origin, so we will calculate the distance to <math>P_{2015}</math> by calculating the distance traveled in the x-direction and the distance traveled in the y-direction. We can calculate this by summing each movement:
+
The distance from <math>P_{2015}</math> to <math>P_0</math> can be evaluated using the [[Pythagorean theorem]]. Assuming <math>P_0</math> lies at the origin, we can calculate the distance the bee traveled to <math>P_{2015}</math> by evaluating the distance the bee traveled in the x-direction and the y-direction. Let's start by summing each movement:
  
<math>x=1\cos{0}+2\cos {30}+3\cos {60}+4\cos {90}+5\cos {120}+\cdot \cdot \cdot+2011\cos{180}+2012\cos {210}+2013\cos{240}+2014\cos{270}+2015\cos{300}</math>
+
<math>x=1\cos{0}+2\cos{30}+3\cos{60}+\cdots+2014\cos{270}+2015\cos{300}</math>
  
A movement of <math>p</math> units at <math>q</math> degrees is the same thing as a movement of <math>-p</math> units at <math>q-180</math> degrees, so we can adjust all the cosines with arguments greater than 180 as follows:
+
A movement of <math>p</math> units at <math>q</math> degrees is the same thing as a movement of <math>-p</math> units at <math>q-180</math> degrees, so we can adjust all the cosines with arguments greater than <math>180</math> as follows:
  
<math>x=1\cos{0}+2\cos {30}+3\cos {60}+4\cos {90}+5\cos {120}+6\cos{150}-7\cos{0}-8\cos{30}-\cdot \cdot \cdot -2015 \cos{120}</math>
+
<math>x=1\cos{0}+2\cos{30}+3\cos{60}+4\cos{90}+5\cos{120}+6\cos{150}-7\cos{0}-8\cos{30}-\cdots-2015\cos{120}</math>
  
Now we group terms with like-cosines and factor out the cosines:
+
Grouping terms with like-cosines and factoring out the cosines:
  
<math>x=(1-7+13-\cdot \cdot \cdot +2005-2011)\cos{0}+(2-8+14- \cdot \cdot \cdot +2006-2012)\cos{30}+\cdot \cdot \cdot +(5-11+17- \cdot \cdot \cdot +2008-2014)\cos{120}+(6-12+18- \cdot \cdot \cdot -2004+2010)\cos{150}</math>
+
<math>x=(1-7+13-\cdots+2005-2011)\cos{0}+\cdots+(6-12+18-\cdots-2004+2010)\cos{150}</math>
  
Each sum in the parentheses has 336 terms (except the very last one, which has 335), so by pairing each term, we can see that there are <math>\frac {336}{2}</math> pairs of <math>-6</math>. So each sum evaluates to <math>168\cdot -6=-1008</math>, except the very last sum, which has 167 pairs of <math>-6</math> and an extra 2010, so it evaluates to <math>167\cdot -6+2010=1008</math>. Plugging in these values:
+
Each sum in the parentheses has <math>336</math> terms (except the very last one, which has <math>335</math>). By pairing each term, we see there are <math>\frac{336}{2}</math> pairs of <math>-6</math>. Therefore, each sum equals <math>168\cdot-6=-1008</math> except the very last sum, which has <math>167</math> pairs of <math>-6</math> plus an extra 2010 and equals <math>167\cdot-6+2010=1008</math>. Plugging in these values:
  
 
<math>x=-1008\cos{0}-1008\cos{30}-1008\cos{60}-1008\cos{90}-1008\cos{120}+1008\cos{150}</math>
 
<math>x=-1008\cos{0}-1008\cos{30}-1008\cos{60}-1008\cos{90}-1008\cos{120}+1008\cos{150}</math>
 
<math>x=1008(-1-\frac{\sqrt{3}}{2}-\frac{1}{2}-0+\frac{1}{2}-\frac{\sqrt{3}}{2})=-1008(1+\sqrt{3})</math>
 
<math>x=1008(-1-\frac{\sqrt{3}}{2}-\frac{1}{2}-0+\frac{1}{2}-\frac{\sqrt{3}}{2})=-1008(1+\sqrt{3})</math>
  
Now that we have how far was traveled in the x-direction, we need to find how far was traveled in the y-direction. Using the same logic as above, we arrive at the sum:
+
We can find how far the bee traveled in the y-direction using the same logic as above, we arrive at the sum:
  
 
<math>y=-1008\sin{0}-1008\sin{30}-1008\sin{60}-1008\sin{90}-1008\sin{120}+1008\sin{150}</math>
 
<math>y=-1008\sin{0}-1008\sin{30}-1008\sin{60}-1008\sin{90}-1008\sin{120}+1008\sin{150}</math>
Line 62: Line 62:
 
<math>y=1008(0-\frac{1}{2}-\frac{\sqrt{3}}{2}-1-\frac{\sqrt{3}}{2}+\frac{1}{2})=-1008(1+\sqrt{3})</math>
 
<math>y=1008(0-\frac{1}{2}-\frac{\sqrt{3}}{2}-1-\frac{\sqrt{3}}{2}+\frac{1}{2})=-1008(1+\sqrt{3})</math>
  
The last step is to use the Pythagorean to find the distance from <math>P_0</math>. This distance is given by:
+
Finally, we use the Pythagorean to find the distance from <math>P_0</math>. This distance is given by:
  
<math>\sqrt{x^2+y^2}=\sqrt{(-1008(1+\sqrt{3}))^2+(-1008(1+\sqrt{3}))^2}=\sqrt{2\cdot 1008^2 \cdot (1+\sqrt{3})^2}=1008(1+\sqrt{3})\sqrt{2}</math>
+
<math>\sqrt{x^2+y^2}=\sqrt{(-1008(1+\sqrt{3}))^2+(-1008(1+\sqrt{3}))^2}=\sqrt{2\cdot1008^2\cdot(1+\sqrt{3})^2}=1008(1+\sqrt{3})\sqrt{2}=1008\sqrt{2}+1008\sqrt{6}</math>, so the answer is <math>1008+2+1008+6=\boxed{\textbf{(B) }2024}</math>.
  
Multiplying out, we have <math>1008\sqrt{2}+1008\sqrt{6}</math>, so the answer is <math>1008+2+1008+6= \boxed {\bold {(B)}\; 2024}</math>.
+
==Solution 3==
 +
We first notice that if the bee is turning 30 degrees each turn, it will take 12 turns to be looking in the same direction when the bee initially left. This means we simply need to answer the question; how far will the bee be when the bee is facing in the same direction?
  
==Condensed Solution like That of Solution 2==
 
BEST NOT TO USE LINED PAPER!
 
Fundamental notes: Every 12 turns the bee is oriented at the same place, and 2015 is <math>11 (\mod 12)</math>.
 
  
We solve by looking at the final abscissa and ordinate.
+
First we use the fact that after 3 turns, the bee will be facing in a direction perpendicular to the the initial direction. From here we can draw a perpendicular from <math>P_2</math> to the line <math>\overline{P_0P_1}</math> intersecting a point <math>C_0</math>. We will also place the point <math>C_1</math> at the intersection of <math>\overline{P_0P_1}</math> and <math>\overline{P_3P_4}</math>. In addition, the point <math>C_2</math> is placed at the perpendicular dropped from <math>P_2</math> to the line <math>\overline{P_3C_1}</math>. We will also set the distance <math>\overline{P_0P_1} = n</math> and thus <math>\overline{P_1P_2} = n+1</math>. With this perpendicular we see that the triangle <math>\triangle{P_1P_2C_0}</math> is a 30-60-90 triangle. This means that the length <math>\overline{P_1C_0} = \frac{(n+1)\sqrt{3}}{2}</math> and the length <math>\overline{C_1C_2} = \frac{n+1}{2}</math>. We can also see that the triangle <math>\triangle{P_2C_1P_3}</math> is a 30-60-90 triangle and thus <math>\overline{C_0C_1} = \frac{n+2}{2}</math> and <math>\overline{C_2P_3} = \frac{(n+2)\sqrt{3}}{2}</math>. Now if we continue this across all <math>P_i</math> and set the point <math>P_0</math> to the coordinates <math>(0, 0)</math>. As you can see, we are inherently putting a “box” around the figure. Doing similar calculations for all four “sides” of this spiral we get that the length
  
ABSCISSA: Notice that the change in the abscissa is, upon each move, <math>j \cos(theta)</math>. Therefore we are looking for the sum of:
+
<cmath>\overline{P_0C_1} = n + \frac{(n+1)\sqrt{3}}{2} + \frac{n+2}{2}</cmath><cmath>\overline{C_1C_4} = \frac{(n+1)}{2} + \frac{(n+2)\sqrt{3}}{2} + (n+3) + \frac{(n+4)\sqrt{3}}{2} + \frac{n+5}{2}</cmath>, <cmath>\overline{C_4C_7} = \frac{(n+4)}{2} + \frac{(n+5)\sqrt{3}}{2} + (n+6) + \frac{(n+7)\sqrt{3}}{2} + \frac{n+8}{2}</cmath>, <cmath>\overline{C_7C_{10}} = \frac{(n+7)}{2} + \frac{(n+8)\sqrt{3}}{2} + (n+9) + \frac{(n+10)\sqrt{3}}{2} + \frac{n+11}{2}</cmath>, and finally <cmath>\overline{C_{10}P_{12}} = \frac{(n+10)}{2} + \frac{(n+11)\sqrt{3}}{2}</cmath>.  
<math>1 * (1+...+2005)</math>     <math>\frac{\sqrt{3}}{2} * (2+...+2006)</math> and so on (of course, you must write them down). Note that the last summation contains numbers <math>12+..+2004</math> instead of until 2016.
 
  
Compare the <math>1</math>s. Because each term with <math>+1</math> is 6 less than each term with a cosine value of <math>-1</math>, you get <math>-6*168=-1008</math>.  
+
Here the point <math>C_4</math> is defined as the intersection of lines <math>\overline{P_3P_4}</math> and <math>\overline{P_6P_7}</math>. The point <math>C_7</math> is defined as the intersection of lines <math>\overline{P_6P_7}</math> and <math>\overline{P_9P_{10}}</math>. Finally, the point <math>C_10</math> is defined as the intersection of lines <math>\overline{P_{9}P_{10}}</math> and <math>\overline{P_{12}P_{13}}</math>. Note that our spiral stops at <math>P_{12}</math> before the next spiral starts. Calculating the offset from the x and the y direction, we see that the offset, or the new point <math>P_{12}</math>, is <math>({-6}, {-6}-12 \sqrt{3})</math>. This is an interesting property that the points’ coordinate changes by a constant offset no matter what <math>n</math> is. Since the new point’s subscript changes by 12 each time and we see that 2016 is divisible by 12, the point <math>P_{2016} = ({-168} \cdot {6}, {168} \cdot ({-6} \sqrt{3} {-12}))</math>. Using similar 30-60-90 triangle properties, we see that <math>P_{2015} = ({-6} \cdot 168-1008 \sqrt{3}, 168({-6} \sqrt{3} - 12) + 1008)</math>. Using the distance formula, the numbers cancel out nicely (1008 is divisible by 168, so take 168 when using the distance formula) and we see that the final answer is <math>(1008)(1+\sqrt{3})(\sqrt{2})</math> which gives us a final answer of <math>\boxed{2024}</math>.
  
Note that all the numbers with a <math>cos</math> of <math>\frac{1}{2}</math> or <math>-\frac{1}{2}</math> cancel out by symmetry.  
+
-bowmanrocks32
 +
 
 +
 
 +
==Solution 4==
 +
Suppose that the bee makes a move of distance <math>i</math>. After <math>6</math> turns it will be facing the opposite direction and move <math>i+6</math> units. Combining these opposite movements gives a total movement of <math>-6</math> units in the original direction. This means that every <math>12</math> moves, the bee will move <math>-6</math> units in each direction of <math>0^\circ, 30^\circ, 60^\circ, 90^\circ, 120^\circ, 150^\circ</math>.
  
Finally, on to the square-root terms- there are 2 <math>\frac{\sqrt{3}}{2}</math> and 2 negative ones. Cases are symmetric, except the second <math>\frac{\sqrt{3}}{2}</math> lacks the <math>2016</math> for a grand sum of <math>0</math>. Therefore, we subtract <math>1008\sqrt{3}</math>. So the abscissa is <math>-1008-1008\sqrt{3}</math>.
+
We want to find the displacement vector for every <math>12</math> moves. Factoring out the <math>-6</math> for now (which flips the direction), we draw a quick diagram of one unit in each direction.
 +
<asy>
 +
draw((0,0)--(1,0)--(1+sqrt(3)/2, 1/2)--(3/2+sqrt(3)/2, 1/2+sqrt(3)/2)--(3/2+sqrt(3)/2, 3/2+sqrt(3)/2)--(1+sqrt(3)/2, 3/2+sqrt(3))--(1, 2+sqrt(3)), EndArrow);
 +
draw((1,0)--(3/2+sqrt(3)/2, 0), dashed);
 +
draw((1,2+sqrt(3))--(3/2+sqrt(3)/2, 2+sqrt(3)), dashed);
 +
draw((3/2+sqrt(3)/2, 2+sqrt(3))--(3/2+sqrt(3)/2, 0), dashed);
 +
draw((1+sqrt(3)/2,0)--(1+sqrt(3)/2, 1/2)--(3/2+sqrt(3)/2, 1/2), dashed);
 +
draw((1+sqrt(3)/2,2+sqrt(3))--(1+sqrt(3)/2, 3/2+sqrt(3))--(3/2+sqrt(3)/2, 3/2+sqrt(3)), dashed);
 +
</asy>
 +
Using the 30-60-90 triangles, it is clear that the displacement vector (factoring back in the <math>-6</math>) is <math>-6\left\langle 1, 2+\sqrt{3}\right\rangle</math>.
  
ORDINATE: This case is just like the one discussed before- and write out all sums like shown above-
+
To compute the distance to <math>P_{2015}</math>, we can compute the position of <math>P_{2016}</math> (a multiple of <math>12</math> moves) and then subtract the vector from <math>P_{2015}</math> to <math>P_{2016}</math>.
  
but now note that for the 4 <math>1</math> or <math>-1</math>s, we need to subtract <math>6*2*168=2016</math>!
+
The bee reaches <math>P_{2016}</math> after <math>\frac{2016}{12} = 168</math> sets of <math>12</math> moves, so the total displacement vector to <math>P_{2016}</math> is <math>168(-6)\left\langle 1, 2+\sqrt{3}\right\rangle = \left\langle -1008, -2006-1008\sqrt{3}\right\rangle</math>.
  
The case of <math>\frac{1}{2}</math> or <math>-\frac{1}{2}</math> is symmetric, except, of course, of the lack of the <math>2016</math>, which means we add back <math>1008</math> for <math>-1008</math>.  
+
The bee moves at an angle of <math>-30^\circ</math> from <math>P_{2015}</math> to <math>P_{2016}</math>, so subtracting it means moving an angle of <math>150^\circ</math>. Since the vector is <math>2016</math> units long, by a 30-60-90 triangle, it is <math>\left\langle -1008\sqrt{3}, 1008\right\rangle</math>.
  
Now for the square-root ones, each term can be paired up with a negative term that has a greater magnitude by 6, meaning <math>(6+6)*168*\sqrt{3}*\frac{1}{2}=-1008\sqrt{3}</math>. Note that there are TWO such pairs, each with this 6-magnitude difference, which is why we have <math>(6+6)</math>, and that there are <math>168</math> terms for each series.
+
Therefore the total displacement vector to <math>P_{2015}</math> is <math>\left\langle -1008, -2006-1008\sqrt{3}\right\rangle + \left\langle -1008\sqrt{3}, 1008\right\rangle = \left\langle -1008-1008\sqrt{3}, -1008-1008\sqrt{3}\right\rangle</math>. The displacement is thus <math>\sqrt{2}\left|-1008-1008\sqrt{3}\right| = 1008\sqrt{2}+1008\sqrt{6} \implies 1008+2+1008+6 = \boxed{\text{(B) }2024}</math>.
  
Since the abscissa and ordinate are equal, the distance is just <math>\sqrt{2}</math> times their magnitude. By the requirements of the problem, our answer is <math>1008+1008+2+6=2024 \boxed{(B)}</math>!
+
Fun fact: The displacement to <math>P_{2016}</math> is the same as for <math>P_{2015}</math>.
  
==Solution 3==
+
==Solution 5 (big complex bash)==
We first notice that if the bee is turning 30 degrees each turn, it will take 12 turns to be looking in the same direction when the bee initially left. This means we simply need to answer the question; how far will the bee be when the bee is facing in the same direction?
+
Let <math>P_0</math> be the origin. East would be the real axis in the positive direction. Then we can assign each <math>P_n</math> a complex value. The displacement would then be the magnitude of the complex number.
 +
 
 +
Notice that after the <math>n</math>th move the value of <math>P_n</math> is <math>P_{n-1}+ne^{\frac{i(n-1)\pi}{6}}</math>. Also notice that after six moves the bee is facing in the opposite direction. And because we have found a recursion, we can add these up.
 +
 
 +
Then we have <cmath>P_n=e^{0}+2e^{\frac{i\pi}{6}}+\cdots+2015e^{\frac{2014i\pi}{6}},</cmath> and this becomes <cmath>(1-7+13-\cdots-2011)e^0+(2-8+\cdots-2012)e^{\frac{i\pi}{6}}+\cdots+(6-12+\cdots+2010)e^{\frac{5i\pi}{6}}.</cmath>
  
 +
Simplifying, we have <cmath>-6\cdot168-6\cdot168e^{\frac{i\pi}{6}}-6\cdot168e^{\frac{2i\pi}{6}}-6\cdot168e^{\frac{3i\pi}{6}}-6\cdot168e^{\frac{4i\pi}{6}}-(2010-6\cdot167)e^{\frac{5i\pi}{6}},</cmath> which eventually simplifies to <cmath>-1008-(2+\sqrt3)1008i,</cmath> and this is a <math>15-75-90</math> triangle which has ratios of <math>1:(2+\sqrt3):(\sqrt2+\sqrt6)</math> so the magnitude is <math>1008\sqrt2+1008\sqrt6</math> and the answer is <math>1008+2+1008+6=\boxed{\text{(B) }2024}</math>.
  
First we use the fact that after 3 turns, the bee will be facing in a direction perpendicular to the the initial direction. From here we can draw a perpendicular from <math>P_2</math> to the line <math>\overline{P_0P_1}</math> intersecting a point <math>C_0</math>. We will also place the point <math>C_1</math> at the intersection of <math>\overline{P_0P_1}</math> and <math>\overline{P_3P_4}</math>. In addition, the point <math>C_2</math> is placed at the perpendicular dropped from <math>P_2</math> to the line <math>\overline{P_3C_1}</math>. We will also set the distance <math>\overline{P_0P_1} = n</math> and thus <math>\overline{P_1P_2} = n+1</math>. With this perpendicular we see that the triangle <math>\triangle{P_1P_2C_0}</math> is a 30-60-90 triangle. This means that the length <math>\overline{P_1C_0} = \frac{(n+1)\sqrt{3}}{2}</math> and the length <math>\overline{C_1C_2} = \frac{n+1}{2}</math>. We can also see that the triangle <math>\triangle{P_2C_1P_3}</math> is a 30-60-90 triangle and thus <math>\overline{C_0C_1} = \frac{n+2}{2}</math> and <math>\overline{C_2P_3} = \frac{(n+2)\sqrt{3}}{2}</math>. Now if we continue this across all <math>P_i</math> and set the point <math>P_0</math> to the coordinates <math>(0, 0)</math>. As you can see, we are inherently putting a “box” around the figure. Doing similar calculations for all four “sides” of this spiral we get that the length
+
~caroline2023
  
<cmath>\overline{P_0C_1} = n + \frac{(n+1)\sqrt{3}}{2} + \frac{n+2}{2}</cmath>,  <cmath>\overline{C_1C_4} = \frac{(n+1)}{2} + \frac{(n+2)\sqrt{3}}{2} + (n+3) + \frac{(n+4)\sqrt{3}}{2} + \frac{n+5}{2}</cmath>, <cmath>\overline{C_4C_7} = \frac{(n+4)}{2} + \frac{(n+5)\sqrt{3}}{2} + (n+6) + \frac{(n+7)\sqrt{3}}{2} + \frac{n+8}{2}</cmath>, <cmath>\overline{C_7C_{10}} = \frac{(n+7)}{2} + \frac{(n+8)\sqrt{3}}{2} + (n+9) + \frac{(n+10)\sqrt{3}}{2} + \frac{n+11}{2}</cmath>, and finally <cmath>\overline{C_{10}P_{12}} = \frac{(n+10)}{2} + \frac{(n+11)\sqrt{3}}{2}</cmath>.
 
  
Here the point <math>C_4</math> is defined as the intersection of lines <math>\overline{P_3P_4}</math> and <math>\overline{P_6P_7}</math>. The point <math>C_7</math> is defined as the intersection of lines <math>\overline{P_6P_7}</math> and <math>\overline{P_9P_{10}}</math>. Finally, the point <math>C_10</math> is defined as the intersection of lines <math>\overline{P_{9}P_{10}}</math> and <math>\overline{P_{12}P_{13}}</math>. Note that our spiral stops at <math>P_{12}</math> before the next spiral starts. Calculating the offset from the x and the y direction, we see that the offset, or the new point <math>P_{12}</math>, is <math>({-6}, {-6}-12 \sqrt{3})</math>. This is an interesting property that the points’ coordinate changes by a constant offset no matter what <math>n</math> is. Since the new point’s subscript changes by 12 each time and we see that 2016 is divisible by 12, the point <math>P_{2016} = ({-168} \cdot {6}, {168} \cdot ({-6} \sqrt{3} {-12}))</math>. Using similar 30-60-90 triangle properties, we see that <math>P_{2015} = ({-6} \cdot 168-1008 \sqrt{3}, 168({-6} \sqrt{3} - 12) + 1008)</math>. Using the distance formula, the numbers cancel out nicely (1008 is divisible by 168, so take 168 when using the distance formula) and we see that the final answer is <math>(1008)(1+\sqrt{3})(\sqrt{2})</math> which gives us a final answer of <math>\boxed{2024}</math>.
+
==Solution 6==
 +
After each 12 moves, the bee will be facing the same direction as it started. Let <math>P_0</math> be the origin and let <math>P_n</math> (with <math>n</math> divisible by <math>12</math>) be <math>(x,y)</math>. We now notice that each of the move pairs with lengths <math>n+1</math>/<math>n+7</math>, <math>n+2</math>/<math>n+8</math>, <math>n+3</math>/<math>n+9</math>, <math>n+4</math>/<math>n+10</math>, <math>n+5</math>/<math>n+11</math>, <math>n+6</math>/<math>n+12</math> will move the bee 6 units in the directions corresponding to the moves with lengths <math>n+7</math>, <math>n+8</math>, <math>n+9</math>, <math>n+10</math>, <math>n+11</math>, and <math>n+12</math>. This equates to moving the bee from <math>(x,y)</math> to <math>(x-6,y-12-6\sqrt{3})</math>, a move that repeats every 12 moves. Since <math>\frac{2016}{12} = 168</math>, we have that <math>P_(2016) = (-1008, -2016-1008\sqrt{3})</math>. It follows that <math>P_(2015) = (-1008-1008\sqrt{3}, -1008-1008\sqrt{3})</math> so the distance to <math>P_0</math> is <math>1008(\sqrt{2} + \sqrt{6})</math> so the answer is <math>1008 + 2 + 1008 + 6 = \boxed{\text{(B) } 2024}</math>.
  
-bowmanrocks32
+
- bobjoebilly
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2015|ab=B|after=Last Problem|num-b=24}}
 
{{AMC12 box|year=2015|ab=B|after=Last Problem|num-b=24}}
 +
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:16, 19 May 2024

Problem

A bee starts flying from point $P_0$. She flies $1$ inch due east to point $P_1$. For $j \ge 1$, once the bee reaches point $P_j$, she turns $30^{\circ}$ counterclockwise and then flies $j+1$ inches straight to point $P_{j+1}$. When the bee reaches $P_{2015}$ she is exactly $a \sqrt{b} + c \sqrt{d}$ inches away from $P_0$, where $a$, $b$, $c$ and $d$ are positive integers and $b$ and $d$ are not divisible by the square of any prime. What is $a+b+c+d$ ?

$\textbf{(A)}\; 2016 \qquad\textbf{(B)}\; 2024 \qquad\textbf{(C)}\; 2032 \qquad\textbf{(D)}\; 2040 \qquad\textbf{(E)}\; 2048$

Solution 1

Let $x=e^{i\pi/6}$, a $30^\circ$ counterclockwise rotation centered at the origin. Notice that $P_k$ on the complex plane is:

\[1+2x+3x^2+\cdots+(k+1)x^k\]

We need to find the magnitude of $P_{2015}$ on the complex plane. This is an arithmetico-geometric series.

\begin{align*} S &=1+2x+3x^2+\cdots+2015x^{2014} \\ xS &=x+2x^2+3x^3+\cdots+2015x^{2015} \\ (1-x)S &=1+x+x^2+\cdots+x^{2014}-2015x^{2015} \\ S &= \frac{1-x^{2015}}{(1-x)^2}-\frac{2015x^{2015}}{1-x} \end{align*}

We want to find $|S|$. First, note that $x^{2015}=x^{11}=x^{-1}$ because $x^{12}=1$. Therefore

\[S =\frac{1-\frac{1}{x}}{(1-x)^2}-\frac{2015}{x(1-x)}=-\frac{1}{x(1-x)}-\frac{2015}{x(1-x)}=-\frac{2016}{x(1-x)}.\]

Hence, since $|x|=1$, we have $|S| = \frac{2016}{|1-x|}.$

Now we just have to find $|1-x|$. This can just be computed directly:

\[1-x=1-\frac{\sqrt{3}}{2}-\frac{1}{2}i\]

\[|1-x|^2=\left(1-\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=2-\sqrt{3}={\left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)}^2\]

\[|1-x|=\frac{\sqrt{6}-\sqrt{2}}{2}\]

Therefore $|S|=2016\cdot\frac{2}{\sqrt{6}-\sqrt{2}}=2016\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)=1008\sqrt{2}+1008 \sqrt{6}$.

Thus the answer is $1008+2+1008+6=\boxed{\textbf{(B)}\; 2024}$.

Solution 2

Here is an alternate solution that does not use complex numbers:

The distance from $P_{2015}$ to $P_0$ can be evaluated using the Pythagorean theorem. Assuming $P_0$ lies at the origin, we can calculate the distance the bee traveled to $P_{2015}$ by evaluating the distance the bee traveled in the x-direction and the y-direction. Let's start by summing each movement:

$x=1\cos{0}+2\cos{30}+3\cos{60}+\cdots+2014\cos{270}+2015\cos{300}$

A movement of $p$ units at $q$ degrees is the same thing as a movement of $-p$ units at $q-180$ degrees, so we can adjust all the cosines with arguments greater than $180$ as follows:

$x=1\cos{0}+2\cos{30}+3\cos{60}+4\cos{90}+5\cos{120}+6\cos{150}-7\cos{0}-8\cos{30}-\cdots-2015\cos{120}$

Grouping terms with like-cosines and factoring out the cosines:

$x=(1-7+13-\cdots+2005-2011)\cos{0}+\cdots+(6-12+18-\cdots-2004+2010)\cos{150}$

Each sum in the parentheses has $336$ terms (except the very last one, which has $335$). By pairing each term, we see there are $\frac{336}{2}$ pairs of $-6$. Therefore, each sum equals $168\cdot-6=-1008$ except the very last sum, which has $167$ pairs of $-6$ plus an extra 2010 and equals $167\cdot-6+2010=1008$. Plugging in these values:

$x=-1008\cos{0}-1008\cos{30}-1008\cos{60}-1008\cos{90}-1008\cos{120}+1008\cos{150}$ $x=1008(-1-\frac{\sqrt{3}}{2}-\frac{1}{2}-0+\frac{1}{2}-\frac{\sqrt{3}}{2})=-1008(1+\sqrt{3})$

We can find how far the bee traveled in the y-direction using the same logic as above, we arrive at the sum:

$y=-1008\sin{0}-1008\sin{30}-1008\sin{60}-1008\sin{90}-1008\sin{120}+1008\sin{150}$

$y=1008(0-\frac{1}{2}-\frac{\sqrt{3}}{2}-1-\frac{\sqrt{3}}{2}+\frac{1}{2})=-1008(1+\sqrt{3})$

Finally, we use the Pythagorean to find the distance from $P_0$. This distance is given by:

$\sqrt{x^2+y^2}=\sqrt{(-1008(1+\sqrt{3}))^2+(-1008(1+\sqrt{3}))^2}=\sqrt{2\cdot1008^2\cdot(1+\sqrt{3})^2}=1008(1+\sqrt{3})\sqrt{2}=1008\sqrt{2}+1008\sqrt{6}$, so the answer is $1008+2+1008+6=\boxed{\textbf{(B) }2024}$.

Solution 3

We first notice that if the bee is turning 30 degrees each turn, it will take 12 turns to be looking in the same direction when the bee initially left. This means we simply need to answer the question; how far will the bee be when the bee is facing in the same direction?


First we use the fact that after 3 turns, the bee will be facing in a direction perpendicular to the the initial direction. From here we can draw a perpendicular from $P_2$ to the line $\overline{P_0P_1}$ intersecting a point $C_0$. We will also place the point $C_1$ at the intersection of $\overline{P_0P_1}$ and $\overline{P_3P_4}$. In addition, the point $C_2$ is placed at the perpendicular dropped from $P_2$ to the line $\overline{P_3C_1}$. We will also set the distance $\overline{P_0P_1} = n$ and thus $\overline{P_1P_2} = n+1$. With this perpendicular we see that the triangle $\triangle{P_1P_2C_0}$ is a 30-60-90 triangle. This means that the length $\overline{P_1C_0} = \frac{(n+1)\sqrt{3}}{2}$ and the length $\overline{C_1C_2} = \frac{n+1}{2}$. We can also see that the triangle $\triangle{P_2C_1P_3}$ is a 30-60-90 triangle and thus $\overline{C_0C_1} = \frac{n+2}{2}$ and $\overline{C_2P_3} = \frac{(n+2)\sqrt{3}}{2}$. Now if we continue this across all $P_i$ and set the point $P_0$ to the coordinates $(0, 0)$. As you can see, we are inherently putting a “box” around the figure. Doing similar calculations for all four “sides” of this spiral we get that the length

\[\overline{P_0C_1} = n + \frac{(n+1)\sqrt{3}}{2} + \frac{n+2}{2}\], \[\overline{C_1C_4} = \frac{(n+1)}{2} + \frac{(n+2)\sqrt{3}}{2} + (n+3) + \frac{(n+4)\sqrt{3}}{2} + \frac{n+5}{2}\], \[\overline{C_4C_7} = \frac{(n+4)}{2} + \frac{(n+5)\sqrt{3}}{2} + (n+6) + \frac{(n+7)\sqrt{3}}{2} + \frac{n+8}{2}\], \[\overline{C_7C_{10}} = \frac{(n+7)}{2} + \frac{(n+8)\sqrt{3}}{2} + (n+9) + \frac{(n+10)\sqrt{3}}{2} + \frac{n+11}{2}\], and finally \[\overline{C_{10}P_{12}} = \frac{(n+10)}{2} + \frac{(n+11)\sqrt{3}}{2}\].

Here the point $C_4$ is defined as the intersection of lines $\overline{P_3P_4}$ and $\overline{P_6P_7}$. The point $C_7$ is defined as the intersection of lines $\overline{P_6P_7}$ and $\overline{P_9P_{10}}$. Finally, the point $C_10$ is defined as the intersection of lines $\overline{P_{9}P_{10}}$ and $\overline{P_{12}P_{13}}$. Note that our spiral stops at $P_{12}$ before the next spiral starts. Calculating the offset from the x and the y direction, we see that the offset, or the new point $P_{12}$, is $({-6}, {-6}-12 \sqrt{3})$. This is an interesting property that the points’ coordinate changes by a constant offset no matter what $n$ is. Since the new point’s subscript changes by 12 each time and we see that 2016 is divisible by 12, the point $P_{2016} = ({-168} \cdot {6}, {168} \cdot ({-6} \sqrt{3} {-12}))$. Using similar 30-60-90 triangle properties, we see that $P_{2015} = ({-6} \cdot 168-1008 \sqrt{3}, 168({-6} \sqrt{3} - 12) + 1008)$. Using the distance formula, the numbers cancel out nicely (1008 is divisible by 168, so take 168 when using the distance formula) and we see that the final answer is $(1008)(1+\sqrt{3})(\sqrt{2})$ which gives us a final answer of $\boxed{2024}$.

-bowmanrocks32


Solution 4

Suppose that the bee makes a move of distance $i$. After $6$ turns it will be facing the opposite direction and move $i+6$ units. Combining these opposite movements gives a total movement of $-6$ units in the original direction. This means that every $12$ moves, the bee will move $-6$ units in each direction of $0^\circ, 30^\circ, 60^\circ, 90^\circ, 120^\circ, 150^\circ$.

We want to find the displacement vector for every $12$ moves. Factoring out the $-6$ for now (which flips the direction), we draw a quick diagram of one unit in each direction. [asy] draw((0,0)--(1,0)--(1+sqrt(3)/2, 1/2)--(3/2+sqrt(3)/2, 1/2+sqrt(3)/2)--(3/2+sqrt(3)/2, 3/2+sqrt(3)/2)--(1+sqrt(3)/2, 3/2+sqrt(3))--(1, 2+sqrt(3)), EndArrow); draw((1,0)--(3/2+sqrt(3)/2, 0), dashed); draw((1,2+sqrt(3))--(3/2+sqrt(3)/2, 2+sqrt(3)), dashed); draw((3/2+sqrt(3)/2, 2+sqrt(3))--(3/2+sqrt(3)/2, 0), dashed); draw((1+sqrt(3)/2,0)--(1+sqrt(3)/2, 1/2)--(3/2+sqrt(3)/2, 1/2), dashed); draw((1+sqrt(3)/2,2+sqrt(3))--(1+sqrt(3)/2, 3/2+sqrt(3))--(3/2+sqrt(3)/2, 3/2+sqrt(3)), dashed); [/asy] Using the 30-60-90 triangles, it is clear that the displacement vector (factoring back in the $-6$) is $-6\left\langle 1, 2+\sqrt{3}\right\rangle$.

To compute the distance to $P_{2015}$, we can compute the position of $P_{2016}$ (a multiple of $12$ moves) and then subtract the vector from $P_{2015}$ to $P_{2016}$.

The bee reaches $P_{2016}$ after $\frac{2016}{12} = 168$ sets of $12$ moves, so the total displacement vector to $P_{2016}$ is $168(-6)\left\langle 1, 2+\sqrt{3}\right\rangle = \left\langle -1008, -2006-1008\sqrt{3}\right\rangle$.

The bee moves at an angle of $-30^\circ$ from $P_{2015}$ to $P_{2016}$, so subtracting it means moving an angle of $150^\circ$. Since the vector is $2016$ units long, by a 30-60-90 triangle, it is $\left\langle -1008\sqrt{3}, 1008\right\rangle$.

Therefore the total displacement vector to $P_{2015}$ is $\left\langle -1008, -2006-1008\sqrt{3}\right\rangle + \left\langle -1008\sqrt{3}, 1008\right\rangle = \left\langle -1008-1008\sqrt{3}, -1008-1008\sqrt{3}\right\rangle$. The displacement is thus $\sqrt{2}\left|-1008-1008\sqrt{3}\right| = 1008\sqrt{2}+1008\sqrt{6} \implies 1008+2+1008+6 = \boxed{\text{(B) }2024}$.

Fun fact: The displacement to $P_{2016}$ is the same as for $P_{2015}$.

Solution 5 (big complex bash)

Let $P_0$ be the origin. East would be the real axis in the positive direction. Then we can assign each $P_n$ a complex value. The displacement would then be the magnitude of the complex number.

Notice that after the $n$th move the value of $P_n$ is $P_{n-1}+ne^{\frac{i(n-1)\pi}{6}}$. Also notice that after six moves the bee is facing in the opposite direction. And because we have found a recursion, we can add these up.

Then we have \[P_n=e^{0}+2e^{\frac{i\pi}{6}}+\cdots+2015e^{\frac{2014i\pi}{6}},\] and this becomes \[(1-7+13-\cdots-2011)e^0+(2-8+\cdots-2012)e^{\frac{i\pi}{6}}+\cdots+(6-12+\cdots+2010)e^{\frac{5i\pi}{6}}.\]

Simplifying, we have \[-6\cdot168-6\cdot168e^{\frac{i\pi}{6}}-6\cdot168e^{\frac{2i\pi}{6}}-6\cdot168e^{\frac{3i\pi}{6}}-6\cdot168e^{\frac{4i\pi}{6}}-(2010-6\cdot167)e^{\frac{5i\pi}{6}},\] which eventually simplifies to \[-1008-(2+\sqrt3)1008i,\] and this is a $15-75-90$ triangle which has ratios of $1:(2+\sqrt3):(\sqrt2+\sqrt6)$ so the magnitude is $1008\sqrt2+1008\sqrt6$ and the answer is $1008+2+1008+6=\boxed{\text{(B) }2024}$.

~caroline2023


Solution 6

After each 12 moves, the bee will be facing the same direction as it started. Let $P_0$ be the origin and let $P_n$ (with $n$ divisible by $12$) be $(x,y)$. We now notice that each of the move pairs with lengths $n+1$/$n+7$, $n+2$/$n+8$, $n+3$/$n+9$, $n+4$/$n+10$, $n+5$/$n+11$, $n+6$/$n+12$ will move the bee 6 units in the directions corresponding to the moves with lengths $n+7$, $n+8$, $n+9$, $n+10$, $n+11$, and $n+12$. This equates to moving the bee from $(x,y)$ to $(x-6,y-12-6\sqrt{3})$, a move that repeats every 12 moves. Since $\frac{2016}{12} = 168$, we have that $P_(2016) = (-1008, -2016-1008\sqrt{3})$. It follows that $P_(2015) = (-1008-1008\sqrt{3}, -1008-1008\sqrt{3})$ so the distance to $P_0$ is $1008(\sqrt{2} + \sqrt{6})$ so the answer is $1008 + 2 + 1008 + 6 = \boxed{\text{(B) } 2024}$.

- bobjoebilly

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png