Difference between revisions of "1988 AHSME Problems/Problem 19"

(Added a solution with explanation)
(Solution 4 (fastest))
 
(8 intermediate revisions by 3 users not shown)
Line 12: Line 12:
  
  
==Solution==
+
==Solution 1==
The fastest way is to multiply each answer choice by <math>bx + ay</math> and then compare to the numerator. This gives <math>\boxed{\text{B}}</math>.
+
We can multiply each answer choice by <math>bx + ay</math> and then compare with the numerator. This gives <math>\boxed{\text{B}}</math>.
  
 +
==Solution 2==
 +
Expanding everything in the brackets, we get
 +
<math>\frac{ba^2x^3 + 2ba^2xy^2 + b^3xy^2 + a^3x^2y + 2ab^2x^2y + ab^2y^3}{bx + ay}</math>. We can then group numbers up in pairs so they equal <math>n(bx + ay)</math>:
 +
 +
<math>= \frac{ba^2x^3 + a^3x^2y + 2ab^2x^2y + 2ba^2xy^2 + b^3xy^2 + ab^2y^3}{bx+ay}</math>
 +
 +
<math>= \frac{bx + ay(a^2x^2) + bx + ay(2baxy) + bx + ay(b^2y^2)}{bx+ay}</math>
 +
 +
<math>= a^2x^2 + 2baxy + b^2y^2</math>
 +
 +
<math>= (ax + by)^2</math>
 +
 +
We get <math>\boxed{\text{B}}</math>.
 +
 +
-ThisUsernameIsTaken
 +
 +
==Solution 3==
 +
If you were out of time and your algebra isn't that good, you could just plug in some values for the variables and see which answer choice works.
 +
 +
==Solution 4 (fastest)==
 +
After regrouping, the numerator becomes <math>(bx+ay)(a^2x^2+b^2y^2)+2bxa^2y^2+2ayb^2x^2</math>. Factoring further, we get <math>(bx+ay)(a^2x^2+b^2y^2)+2bxay(bx+ay)</math>. After dividing, we get <math>a^2x^2+b^2y^2+2bxay</math>, which can be factored as <math>(ax+by)^2</math>, so the answer is <math>\boxed{\text{B}}</math>.
 +
 +
-Pengu14
  
 
== See also ==
 
== See also ==

Latest revision as of 20:47, 16 January 2024

Problem

Simplify

$\frac{bx(a^2x^2 + 2a^2y^2 + b^2y^2) + ay(a^2x^2 + 2b^2x^2 + b^2y^2)}{bx + ay}$

$\textbf{(A)}\ a^2x^2 + b^2y^2\qquad \textbf{(B)}\ (ax + by)^2\qquad \textbf{(C)}\ (ax + by)(bx + ay)\qquad\\ \textbf{(D)}\ 2(a^2x^2+b^2y^2)\qquad \textbf{(E)}\ (bx+ay)^2$


Solution 1

We can multiply each answer choice by $bx + ay$ and then compare with the numerator. This gives $\boxed{\text{B}}$.

Solution 2

Expanding everything in the brackets, we get $\frac{ba^2x^3 + 2ba^2xy^2 + b^3xy^2 + a^3x^2y + 2ab^2x^2y + ab^2y^3}{bx + ay}$. We can then group numbers up in pairs so they equal $n(bx + ay)$:

$= \frac{ba^2x^3 + a^3x^2y + 2ab^2x^2y + 2ba^2xy^2 + b^3xy^2 + ab^2y^3}{bx+ay}$

$= \frac{bx + ay(a^2x^2) + bx + ay(2baxy) + bx + ay(b^2y^2)}{bx+ay}$

$= a^2x^2 + 2baxy + b^2y^2$

$= (ax + by)^2$

We get $\boxed{\text{B}}$.

-ThisUsernameIsTaken

Solution 3

If you were out of time and your algebra isn't that good, you could just plug in some values for the variables and see which answer choice works.

Solution 4 (fastest)

After regrouping, the numerator becomes $(bx+ay)(a^2x^2+b^2y^2)+2bxa^2y^2+2ayb^2x^2$. Factoring further, we get $(bx+ay)(a^2x^2+b^2y^2)+2bxay(bx+ay)$. After dividing, we get $a^2x^2+b^2y^2+2bxay$, which can be factored as $(ax+by)^2$, so the answer is $\boxed{\text{B}}$.

-Pengu14

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png